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In my PhD thesis [5], I have shown how to represent Conway's surreal numbers [16]
as hyperseries, which are generalisations of Dahn-Göring [17] and Écalle's transseries.
Hyperseries are generalised power series s in a variable x, that are endowed with a hyper-
serial structure [13]: a collection of functions s 7! f � s that are regular (e.g. analytic
and monotone) in a formal sense, and which are themselves represented as hyperseries f .
These functions include:

� exponentials ex and logarithms logx,

� so-called hyperexponentials, e.g. a formal term e!x which satisfies Abel's equation

e!x � (x+1)=ex � e!x ;

and its functional inverse `!x with e!x � (`!x)= (`!x) � e!x=x,

� so-called nested series such as expansions with transfinite depth
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which in can be made rigorous sense of in hyperseries.

My thesis consisted in showing that the class No of surreal numbers has a natural hyper-
serial structure. This has sprouted a series of research questions that are summarized below.

1 Defining the derivation and composition law
Using the hyperserial structure on the non-Archimedean ordered field No of surreal num-
bers [11], it is possible to represent surreal numbers as hyperseries with real coefficients [12].
This representation gives a natural way to treat numbers as functions defined on the class
No>R of positive infinite numbers, and to differentiate them as such. In other words, this
gives a canonical way to define a composition law � :No�No>R¡!No and a derivation
@ :No¡!No on surreal numbers. This is van der Hoeven's conjecture:

Conjecture A. [22] There is are a derivation and a composition law on No that are
compatible with its hyperserial structure.

I have notes which define these operations and derive their main elementary properties.
I plan to turn them into a series of papers, partly in joint work with J. van der Hoeven.
This series recently started by a technical note [9], in which I showed how to compose
numbers by monomials that are �sufficiently hyperexponential�.

2 Model theory of groups of regular growth rates
I am studying several inter-related problems motivated by the investigation of the first-
order structure

N := (No;+; �; <;�; @ ; �):
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This structure has interesting properties: closedness under conjugacy equations, model
completeness as an ordered valued differential field [1, 2], set-wise order saturation. . .

Unfortunately, it is difficult to even start looking into its first-order properties when
taking the composition law into account, because little is known about first-order theories
of ordered structures with composition laws. My long-term plan is to build toward an
understanding of some of these structures, in the hope of establishing tameness properties
of N and other such structures.

2.1 Growth order groups
One way to begin this journey is to restrain oneself to a small reduct of N . The natural
candidate is the ordered group Nog=(No>R; �; <). It shares many first-order properties
with ordered groups of germs at +1 of definable unary functions in o-minimal expansions
of real-closed fields. Drawing on this connection, I introduced [10] an elementary class
of ordered groups, called growth order groups (henceforth GOGs), that is intended
to subsume the informal notion of group of regular growth rates, exemplified both by o-
minimal germs and hyperseries. I expect that o-minimality is a natural source of GOGs.
In particular, I want to prove the following:

Conjecture B. Let R= (R;+; �; <; : : : ) be an o-minimal expansion of the real ordered
field. The ordered group, under composition and comparison at infinity, of germs at +1
of unary R-definable maps R¡!R is a growth order group.

The special case when R is levelled in the sense of [27] was proved in [10].

2.2 Equations over valued groups
Growth order groups come equipped with a canonical definable valuation, which plays a
prominent role in establishing their properties. An important matter to be understood
regarding GOGs is the unary equation problem: given a GOG G and a unary term t(y)
in the language of groups with parameters in G, when is there a growth order group G�
extending G such that

G �9y(t(y)=1) ? (2.1)

Indeed, this question is a baby version of the search for existentially closed GOGs. Seeing
G as a group of o-minimal germs, or formal series under composition, the equation t(y)=1
translates to an intricate functional equation

g1 � y��1 � g2 � y��2 � � � � � gn � y��n= id:

No practical theory of such general functional equations exists.
Ordered groups of o-minimal germs for expansions R of general real-closed fields may

fail to be GOGs. Likewise, basic expansions of a GOG related to the unary equation
problem fail to be GOGs. This calls for an extension of the class of growth ordered groups
to a larger class of valued groups that would encompass all the groups involved in the
unary equation problem for GOGs, while retaining sufficiently many properties of the
canonical valuation on GOGs that equations over these valued groups be traceable. We
introduced [6] these valued groups, called c-valued groups, and studied their properties.
Nearly Abelian c-valued groups are c-valued groups in which commutators decrease
in valuation. They include for instance groups of parabolic2.1 formal series, or GOGs of
parabolic o-minimal germs. Our theory is suited to studying unary equations over certain
pure groups as well as exponential groups in the sense of [28, 29]. Adapting some classical
valuation theoretic notions, such as residues and spherical completeness, to the case of non-
Abelian groups (see also [31]), we obtained in particular:

2.1. we use parabolic as a synonym for �tangent to the identity�
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Theorem 2.1. [6, Theorem 2] Let (G ; �;1; v) be a spherically complete, torsion-free, nearly
Abelian c-valued group. Suppose that its (Abelian) residue groups are divisible. Then any
equation

g1 y
�1 � � � gn y�n=1

where g1; : : : ; gn2 G and �1+ � � �+�n=/ 0 has a unique solution y in G.

To us, this would give a satisfactory partial answer to the unary equation problem
restricted to non-singular equations, i.e. equations with �1+ � � � + �n=/ 0, if we had a
positive answer to the following question:

Question C. Given a c-valued group G, is there a spherically complete c-valued group G�
extending G?

Our next goal besides answering that question is to find valued groups in which the
geometry of definable sets is tame (see Section 3.4). This mainly entails solving singular
equations over valued groups. We have a candidate of a good first-order theory whose
models have this feature.

2.3 Model theoretic approach to recursive surreal definitions
A defining aspect of No is the possibility of defining operations on its Cartesian powers
via recursive definitions as per [19]. Indeed this is how the arithmetic [16], exponential
function [20] and hyperserial structure [11] were defined. It is sometimes possible [19] to
show that a function with a recursive definition on No is �tame�, for instance satisfying
the intermediate value property (IVP). This is particularly interesting because the IVP for
unary terms in a first-order language is sometimes sufficient to entail existential closedness
for the corresponding structure (e.g. adding the IVP axiom scheme for unary terms to the
theories of linearly ordered Abelian groups, ordered domains, or Liouville-closed H-fields
with small derivation [1] yields their model companion).

Thus it would be interesting to revisit and generalise previous definitions of operations
on No with a more model theoretic approach. In particular, given a first-order language
L= h<; (fi)i2I i where each fi; i2I is a function symbol, and an L-theory T of dense linear
orders without endpoints, when and how (and in what order) can one recursively define
interpretations of the function symbols fi; i2 I as function fi on Cartesian powers of No,
in such a way that (No;<; (fi)i2I) be a model of T ? When doing so, what is the complete
theory ThL(No) of (No;<; (fi)i2I)?

3 Lie calculus for algebras and groups of formal series
The formal realm usually serves as a collection of convenient extensions of first-order
structures in which many equations or existential formulas are satisfied. Developing formal
versions of classical tools in algebra, geometry and analysis is a way to build formal struc-
tures fitting our goals, for instance satisfying a given first-order theory.

3.1 Formal Lie correspondence
Together with S. L. Krapp, S. Kuhlmann, D. C. Panazzolo and M. Serra, we showed
[14] that a fraction of the classical Lie theory applies to Lie algebras of generalised formal
series called Noetherian series (see [21]). They come equipped with a partial ordering �
of strict dominance, and a notion of infinite sums, for which linear maps commuting with
infinite sums are said strongly linear . They include for instance algebras of formal power
series in commuting or non-commuting variables, and Hahn series fields and skew-fields.
We showed:
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Theorem 3.1. Let (A;+; �;�) be an algebra, in characteristic 0, of Noetherian series.
Then the formal Taylor series of the exponential map induces an isomorphism between the
group Der�

+(A) of strongly linear derivations @ on A with @(a)�a for all a2An f0g and
the group 1-Aut+(A) under composition of strongly linear automorphisms � of A with
�(a)¡ a� a for all a2A n f0g.

The group law on Der�
+(A) is given by a formal Baker-Campbell-Hausdorff product (see

[32]). There is also a formal version of the third homomorphism theorem. We call these
relations the formal Lie correspondence. Motivated by [26], this raises the question:

Question D. Does the formal Lie correspondence extend between a Lie subalgebra of the
algebra Der+(A) of strongly linear derivations on A and the group Aut+(A;�) of strongly
linear automorphism of (A;+; �;�)?

3.2 Groups with infinite linearly ordered products
In analogy with valuation theory in commutative algebra (see e.g. [25] and [23]), we expect
that elements f in sufficiently large groups of o-minimal germs should have compositional
asymptotic expansions

f � 𝓈0
[r0] � � � � � 𝓈

[r] � � � �;  <�

where (𝓈)<� is a scale of functions that is strictly decreasing in rate of growth, (r)<�
is a sequence of non-zero real numbers, and 𝓈

[r] denotes the r-th real iterate of 𝓈. The
formalisation of such asymptotic expansions was done in the general cases of growth order
groups and valued groups, in [10, 6], in the form of a theory of scales and pseudo-Cauchy
sequences. We lack a formalisation of the expansions themselves that wold be the non-
commutative analogue of fields of formal series, i.e. a group of formal non-commutative

series 𝓈0
[r0] � � � 𝓈

[r] � � � whose group operation depends only on the assignment 𝓈 7! r:

Question E. Given a linearly ordered set (I ;<) and a family (Ci)i2I of Abelian ordered
groups, under what conditions can one define a group law � on the set Hi2ICi of functions
f 2�i2ICi with anti-well-ordered support supp f =fi2I : f(i)=/ 0Cig, ordered lexicograph-
ically, such that the ordered group (Hi2I Ci; �; 1; <) is a growth order group?

We proposed [8] a framework for studying infinite linearly ordered products in
general groups. We were able to show that some classical groups of formal series can be
endowed with such infinite products in a canonical way, and showed that this gives a
canonical representation of their elements as formal non-commutative series:

Theorem 3.2. (consequence of [8, Theorems 4 and 5]) Let C be an ordered field, and let
PC be the group under composition of power series s with anti-well-ordered support, with
exponents and coefficients in C, that are tangent to the identity. Then one can define
transfinite linearly ordered products on PC, and for each s 2 PC, there is a unique map
c :C ¡!C with anti-well-ordered support with s=

Q
e2c (x+xe)c(e).

3.3 Groups of formal series
In forthcoming work, relying on a study of Taylor expansions for functions defined on
fields of formal series in progress with V. L. Mantova, we will show how to use infinite
compositions of formal series in order to study properties of sets of formal series with
composition laws.
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Work in progress. The set of positive infinite finitely nested series of [4] is a group.
Moreover, any such series can be represented uniquely as a possibly transfinite composition
as in Theorem 3.2.

The same proof will apply to No provided the composition law is defined.

3.4 Conjugacy, resonance, and asymptotic differential algebra
In order to investigate tame first-order theories of nearly Abelian c-valued groups (see
Section 2.2), one needs to find such groups where definable sets are simple in a geometric
sense. A sound condition is that discreteness should only come from Abelian subgroups3.1.

However, the phenomenon of Poincaré resonance (see [18]) in normalising formal
local objects such as germs of vector fields and diffeomorphisms, precludes this. In the
case of plain parabolic formal power series s = x + s0 + s1 x¡1+ s2 x¡2 + � � � in CJxK,
we say that there is resonance when the the shortest Laurent polynomial p= x+ p0+
p1x

¡1+ p2x
¡2+ � � �+ pnx

¡n which is a conjugate of s is not the truncation x+ skx
¡k of

s consisting in its first two non-zero terms, but contains an additional resonant term cx¡n

which depends on a longer truncation of s. From a combinatorial standpoint, this means
that the term c x¡n cannot be eliminated by elementary operations of conjugation. From
the standpoint of the model theory of valued groups, this entails that the set of parabolic
power series that are conjugates of s has infinitely many definable connected components,
which do not come from an Abelian subgroup.

For us, this means that such groups as that of parabolic power series are to be avoided.
The reoccurrence of resonance was an unpleasant hurdle in studying valued groups, until
we found a way to interpret it (in certain prominent cases) as a property of the underlying
valued differential fields of series. Working on the Lie algebra side of the formal Lie cor-
respondence, we were able [7] to formalise resonance for certain groups of transseries and
to establish an equivalence between the non-existence of resonance and the existence of
asymptotic integrals (see [1, p 327]). Our equivalence was only proved over certain fields
of classical transseries. When the composition law � and derivation @ are defined on No,
we wish to extend it thus:

Conjecture F. Let S be a direct limit of spherically complete differential subfields of
(No; @), and suppose that the set G of parabolic elements in S is a nearly Abelian subgroup
of the c-valued group of all parabolic numbers. Then conjugacy in G is resonance-free if
and only if S has asymptotic integration.

4 Hyperexponential and nested functions
Lastly, we turn to more concrete and geometric questions regarding the analytic content
of the calculus of hyperseries.

4.1 Real hyperexponentiation
One long-standing open problem in o-minimality is the existence of a transexponential o-
minimal expansion of the real ordered exponential field, i.e. an expansion which defines
a unary function growing faster than all iterates of exp. Abel's equation in f

f(t+1)= exp(f(t)) for large enough t2R (4.1)

3.1. in (non-Abelian) GOGs, centralisers of non-trivial elements are discrete Abelian subgroups, sometimes
isomorphic to (Z;+; 0; <), (Q;+; 0; <) or (R;+; 0; <) . ..
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is the simplest functional equation whose solutions [24] in Hardy fields [15] are transexpo-
nential.

On the real-analytic side, Kneser's solution E to (4.1) on [0;+1) is a natural candidate
for these o-minimal investigations. On the formal-surreal side, I hope that the calculus of
hyperseries onNo faithfully represents asymptotic properties of E. Recently, A. Padgett
studied in her PhD thesis [30] a first-order theory Ttransexp for (R;+; �; E), in a language
Ltransexp, and showed that the set Htransexp of germs of unary terms in Ltransexp is a
Hardy field. The field L~ �No of finitely nested hyperseries [13], with the hyperexponential
function corresponding to e!x is a model of Ttransexp. A first step toward studying the
relationship between the surreal/formal model L~ and the geometric/analytic model (R;E)
is to prove that there is a natural inclusion

ev! :Htransexp ¡! L~

germ(t(x)) 7¡! t(!):

With A. Padgett and E. Kaplan, we started working on the following conjectures:

Conjecture G. The function ev! is a well-defined Ltransexp-embedding.

We defined [4] a derivation and composition law on L~ . we also expect that:

Conjecture H. The function ev! commutes with the derivation and composition laws on
Htransexp and L~ .

4.2 Nested germs
A unique feature of surreal numbers is that they naturally contain nested numbers, e.g.
numbers whose expansion as a hyperseries is

!
p

+e log!
p

+e
log log!

p
+e

� ��

; (4.2)

where ! 2No is a surreal number that plays the role of a variable at infinity.
On the analytic side, the functional equation

g(t)= t
p

+eg(log(t)) with g(t)� t
p

at +1 (4.3)

naturally generates germs which, when represented using logarithmico-exponential terms,
expand in a similar way as (4.2). There are good reasons [3] to believe that the behavior of
differential polynomials on these nested germs is the same as their behavior on the corre-
sponding nested numbers/hyperseries. Exploiting this, I want to study how the functional
equation (4.3) can be solved in Hardy fields:

Question I. What linear orderings can be represented by quasi-analytic sets of solutions
of (4.3) lying in a common Hardy field?
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