Embedding Hardy fields with composition into transseries fields

03-15-2022

Germs (at $+\infty$)

Identify two functions $f, g: \mathbb{R} \longrightarrow \mathbb{R}$ if for large enough $t \in \mathbb{R}$, we have f(t) = g(t). Equivalence classes are called **germs**. \mathcal{G} is the ring of germs with pointwise sum and product.

- Further structure for $f, g \in \mathcal{G}$.
- **Ordering.** Write f < g if f(t) < g(t) for all $t \gg 1$. So $g > \mathbb{R}$ iff $\lim_{t \to +\infty} g(t) = +\infty$.

Dominance relation. Write $f \prec g$ if r |f| < |g| for all $r \in \mathbb{R}^{>0}$.

- **Derivation.** If $t \mapsto f(t)$ is differentiable on $(r, +\infty)$ for $r \gg 1$, then f' is the germ of the derivative.
- **Composition.** If $g > \mathbb{R}$, then the germ $f \circ g$ of $t \mapsto f(g(t))$ only depends on f and g. We have a *composition law*

$$\circ: \mathcal{G} \times \mathcal{G}^{>\mathbb{R}} \longrightarrow \mathcal{G}.$$

For fixed $g \in \mathcal{G}^{>\mathbb{R}}$, the function $\mathcal{G} \longrightarrow \mathcal{G}$; $f \mapsto f \circ g$ is a strictly increasing morphism of rings.

Hardy fields

A Hardy field is a subfield of \mathcal{G} which is closed under derivation of germs.

Hardy fields with composition

A Hardy field with composition is a Hardy field \mathcal{H} which contains id and which is closed under compositions $(f, g) \mapsto f \circ g$ with $f \in \mathcal{H}$ and $g \in \mathcal{H}^{>\mathbb{R}}$.

For fixed f, the map $g\mapsto f\circ g$ is either constant or strictly monotonous.

Terms and definable functions

Let $\mathcal{R} = (\mathbb{R}, +, -, \times, -^1, <, ...)$ be a *functional* expansion of the real ordered field in a first-order language \mathcal{L} . We define

- $\mathcal{H}_{\mathcal{R}}$ as the set of germs of functions $\mathbb{R} \longrightarrow \mathbb{R}$ that are *definable* with parameters in \mathcal{R} .
- $\mathcal{T}_{\mathcal{R}}$ as the subset of \mathcal{H} of germs of unary functions $r \mapsto t(r)$ for all arity ≤ 1 terms t[u].

Those are partially ordered rings, and even \mathcal{L} -structures under pointwise operations. In general they are just that, and we have $\mathcal{T}_{\mathcal{R}} \subsetneq \mathcal{H}_{\mathcal{R}}$.

If $f, g \in \mathcal{G}$ are given by \mathcal{L} -terms / are definable in \mathcal{R} , then so is $f \circ g$. So $\circ: \mathcal{G} \times \mathcal{G}^{>\mathbb{R}} \longrightarrow \mathcal{G}$ induces composition laws

$$\begin{array}{cccc} \circ: \mathcal{H}_{\mathcal{R}} \times \mathcal{H}_{\mathcal{R}}^{>\mathbb{R}} & \longrightarrow & \mathcal{H}_{\mathcal{R}}. \\ \circ: \mathcal{T}_{\mathcal{R}} \times \mathcal{T}_{\mathcal{R}}^{>\mathbb{R}} & \longrightarrow & \mathcal{T}_{\mathcal{R}}. \end{array}$$

Model theoretic perks

If $\operatorname{Th}(\mathcal{R})$ is *o*-minimal

Then $\mathcal{H}_{\mathcal{R}}$ is a Hardy field with composition.

$\mathcal{M} \succ \mathcal{R} \text{: non-standard model}$

 ξ : element of \mathcal{M} with $\xi > \mathbb{R}$.

There is a natural \mathcal{L} -embedding $\Psi: \mathcal{H}_{\mathcal{R}} \longrightarrow \mathcal{M}$ which sends id to ξ . This map commutes with definable functions $\mathbb{R}^n \longrightarrow \mathbb{R}$.

There is a unique \mathcal{L} -embedding $\Phi: \mathcal{T}_{\mathcal{R}} \longrightarrow \mathcal{M}$ with $\Phi(id) = \xi$.

If $Th(\mathcal{R})$ has QE and a universal axiomatization

Then any definable function $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is given piecewise by (a finite list of) terms. In particular for n = 1, the germ of f lies in $\mathcal{T}_{\mathcal{R}}$. So $\mathcal{T}_{\mathcal{R}} = \mathcal{H}_{\mathcal{R}}$.

Both conditions are satisfied for $\mathcal{R} = \mathbb{R}_{an,exp}$ [cite vdDMM].

A short-lived conjecture?

Conjecture on $\mathcal{H}^{>\mathbb{R}}$

Let \mathcal{H} be a Hardy field with composition and let $f, g \in \mathcal{H}^{>\mathbb{R}}$. Then:

Conjecture 1. For all $\delta \in \mathcal{H}$ with $\delta \prec g$ and $(f' \circ g) \delta \prec (f \circ g)$, we have

 $f \circ (g + \delta) \sim f \circ g.$

Conjecture 2. For all $h \in \mathcal{H}^{>\mathbb{R}}$ with $h \neq \mathrm{id}$, we have

$$(f \circ h = h \circ f \land g \circ h = h \circ g) \Longrightarrow f \circ g = g \circ f.$$

Conjecture 3. If $f > g^{[\mathbb{N}]} > \mathrm{id}$, then $f \circ g > g \circ f$. (iterates)

This conjecture holds for $\mathcal{H}_{an,exp}$. Conjecture 1 holds whenever \mathcal{H} contains exp, but has no transexponential germ.

Transseries

 \mathfrak{L} : group of germs $\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}$ where $\mathfrak{l}_0, \ldots, \mathfrak{l}_{n-1} \in \mathbb{Z}$. The ordering \prec on \mathfrak{L} is lexicographic.

Logarithmic transseries

 \mathbb{T}_{\log} is the field $\mathbb{R}[[\mathfrak{L}]]$ of Hahn series with real coefficients and monomial group \mathfrak{L} . E.g.

$$f_0 = x + \pi \left(\log x\right)^3 + \frac{1}{\log x} + \frac{1}{2\left(\log x\right)^2} + \frac{1}{3\left(\log x\right)^3} + \dots + \frac{2\left(\log x\right)^2}{x}$$

$$f_1 = x + \log x + \log_2 x + \cdots$$

We have a logarithm function $\log (\prod_{k < n} (\log_k x)^{\mathfrak{l}_k}) := \sum_{k < n} \mathfrak{l}_k \log_{k+1} x.$

Exponential extensions

For $n \in \mathbb{N}$, we define $\mathbb{T}_n = \mathbb{R}[[\mathfrak{G}_n]]$ inductively. Set $\mathfrak{G}_0 := \mathfrak{L}$ and $\mathfrak{G}_{n+1} := e^{(\mathbb{T}_n)^{\uparrow}}$ where

- $(\mathbb{T}_n)^{\uparrow}$ is the subgroup of $(\mathbb{T}_n, +, 0)$ of series with only infinite terms.
- $e^{(\mathbb{T}_n)^{\uparrow}}$ is a multiplicative copy of $((\mathbb{T}_n)^{\uparrow}, +, <)$ with a natural inclusion $\mathfrak{G}_n \hookrightarrow e^{(\mathbb{T}_n)^{\uparrow}}; \mathfrak{m} \mapsto e^{\log \mathfrak{m}}.$

The function \log extends inductively to $e^{(\mathbb{T}_n)^{\uparrow}}$ by setting $\log e^{\varphi} := \varphi$ for $\varphi \in e^{(\mathbb{T}_n)^{\uparrow}}$.

Transseries with derivation and composition

Transseries, introduced by Dahn-Göring and Ecalle, can be declined in several forms:

Name	Symbol	Introduced by
grid-based	\mathbb{T}_{g}	Ecalle
LE series	$\mathbb{T}^{ ext{LE}}$	Ecalle, vdDries-Macintyre-Marker
EL series	$\mathbb{T}^{\mathrm{EL}} = \bigcup_{n \in \mathbb{N}} \mathbb{T}_n$	Kuhlmann-Tressl
generalized	$\mathbb{R}\langle\langle\omega angle angle$	vdHoeven, Schmeling, Berarducci-Mantova

Transseries as a differential field with composition

Each of those fields \mathbb{T} is equipped with a derivation $\partial: \mathbb{T} \longrightarrow \mathbb{T}$ and a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ whose properties mimic those of Hardy fields with composition.

$$f_0 = x + \pi \left(\log x\right) + \frac{1}{\log x} + \frac{1}{2\left(\log x\right)^2} + \frac{1}{3\left(\log x\right)^3} + \dots + \frac{2\left(\log x\right)^2}{x}$$
$$f'_0 = 1 + \frac{\pi}{x} - \frac{1}{x\left(\log x\right)^2} - \frac{1}{x\left(\log x\right)^3} - \dots - \frac{4x\left(\log x\right) - 2x\left(\log x\right)^2}{x^2}$$

 $f_1 = x + \log x + \log_2 x + \cdots$ $f_1 \circ (\log x) = \log x + \log_2 x + \cdots$

Log-exp-analytic functions as transseries

There is a unique $\mathcal{L}_{an,exp}$ -embedding $\mathcal{H}_{an,exp} \longrightarrow \mathbb{T}$ which sends id to x. This preserves ∂ and \circ .

[functions \exp_{ω} and \log_{ω} , also $\exp^{[r]}$]

[Adele Padgett's Hardy field]

Levels

Given $F \vDash \mathbb{R}_{exp}$, $a \in F^{>\mathbb{R}}$, the exp-log class EL(a) of $a \in F$ is its equivalence class for

$$a \asymp^{L} b$$
 if and only if $\exists n \in \mathbb{N}, (\log^{[n]} a \sim \log^{[n]} b)$

Assume that $\mathcal H$ is a Hardy field with composition with $\exp,\log\in\mathcal H.$ Set

$$\mathcal{E} := \{ \exp^{[n]} \circ (\log^{[n]} \pm 1) : n \in \mathbb{N} \} \subseteq \mathcal{H}^{>\mathbb{R}}.$$

Then each EL(f) is the convex hull of $\mathcal{E} \circ f = \{g \circ f : g \in \mathcal{E}\}.$

MARKER-MILLER: EL classes in $\mathcal{H}_{an,exp}$ are parametrized by integers. Each $f \in \mathcal{H}_{an,exp}$ lies in $EL(exp^{[n]})$ for a unique $n \in \mathbb{Z}$ called the *level* of f. Write $\lambda_n = EL(f)$. Note that

$$\log \lambda_n = \lambda_{n-1}$$

for all $n \in \mathbb{Z}$.

More levels

Fix $r \in \mathbb{R}$. Write

$$\lambda_{\omega} := \operatorname{EL}(\exp_{\omega}) \qquad (\text{in } \mathbb{R}_{E})$$

$$\lambda_{-\omega} := \operatorname{EL}(\log_{\omega}) \qquad (\text{in } \mathbb{R}_{L})$$

$$\lambda_{r} := \operatorname{EL}(\exp^{[r]}) \qquad (\text{in } \mathbb{R}_{\exp^{[r]}})$$

We have

 $\lambda_{\omega} > \lambda_{\mathbb{Z}}, \quad \lambda_{-\omega} < \lambda_{\mathbb{Z}}, \quad \text{and} \quad \forall r, s \in \mathbb{R}, (\lambda_r < \lambda_s \iff r < s).$

We also have levels $\lambda_{\omega-1}, \lambda_{\omega+1}$ with $\lambda_{\mathbb{Z}} < \lambda_{\omega-1} < \lambda_{\omega} < \lambda_{\omega+1}$, and so on ...

Even more levels

For $\varphi, \psi \in \mathcal{H}_P^{>\mathbb{R}}$, we have

$$EL(exp_{\omega} \circ \varphi) < EL(exp_{\omega} \circ \psi) \iff \mathcal{E} \circ (exp_{\omega} \circ \varphi) < \mathcal{E} \circ (exp_{\omega} \circ \psi)$$
$$\iff (\log_{\omega} \circ \mathcal{E} \circ exp_{\omega}) \circ \varphi < (\log_{\omega} \circ \mathcal{E} \circ exp_{\omega}) \circ \psi$$

Set $g = \exp^{[n]} \circ (\log^{[n]} + 1) \in \mathcal{E}$. Since $\log'_{\omega} \approx \frac{1}{id}$, the mean value theorem for \log_{ω} gives

$$\mathrm{id} + \frac{1}{\log^{[n]} \circ \exp_{\omega}} < \log_{\omega} \circ g \circ \exp_{\omega} < \mathrm{id} + \frac{1}{\log^{[n+1]} \circ \exp_{\omega}}$$

Thus if $\varphi + \left(\frac{1}{\log^{[\mathbb{N}]} \circ \exp_{\omega} \circ \varphi}\right) < \psi$, then $\exp_{\omega} \circ \varphi$ and $\exp_{\omega} \circ \psi$ lie in disinct levels. The EL class $\lambda_{1_{\omega}}$ of $\exp_{\omega} \circ \left(\log_{\omega} + \frac{1}{\log_{\omega}}\right)$

is "infinitesimal", i.e. larger than λ_0 but smaller than each λ_r for $r \in \mathbb{R}^>$.

All levels

Tentative description of all possible levels in models of \mathbb{R}_{exp} using Conway's field No of surreal numbers:

Theorem (BERARDUCCI-MANTOVA, 2015)

EL classes in (No, exp) are in canonical order isomorphism with (No, <) itself.

There is an order embedding $\mathbf{No} \longrightarrow \mathbf{No}^{>\mathbb{R}}, z \mapsto \lambda_z$ such that each surreal number lies in $\mathrm{EL}(\lambda_z)$ for a unique $z \in \mathbf{No}$.

They defined a canonical derivation ∂ on **No** such that (No, ∂) is a Liouville-closed *H*-field. It is even (ADH) an elementary extension of \mathbb{T} .

Theorems

All Hardy fields closed under \exp, \log embed into No as

ordered exponential fields ?	Yes
ordered valued differential fields ?	Yes (ADH,)
ordered valued exponential differential fields ?	Unknown

Goal

Embedding Hardy fields with composition into differential fields of generalized transseries with composition.

BERARDUCCI-MANTOVA defined a composition law

 $\circ: \mathbb{R}\langle \langle \omega \rangle \rangle \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}.$

Where $\lambda_{\mathbb{Z}} \subseteq \mathbb{R}\langle \langle \omega \rangle \rangle \subseteq \mathbf{No}$ is closed under log, exp, and transfinite sums.

But they showed that this composition does not extend to $No \times No^{\mathbb{R}}$ in a compatible way with respect to ∂ . So let us leave the surreal realm for now.

 \rightarrow Can we "directly" build a field of generalized transseries involving transexponential and sublogarithmic behavior so as to include infinite and infinitesimal levels?

 \rightarrow Can we do so while solving the functional equations

 $\exp_{\omega} \circ (\mathrm{id} + 1) = \exp \circ \exp_{\omega}$ and $\log_{\omega} - 1 = \log_{\omega} \circ \log ?$

 \rightarrow Could we also get formal versions of the conjecture for those fields?

Formal hyperlogarithms

Let us build a structure $(\mathbb{L}, \partial, \circ)$ which contains a solution $L_{\omega}x$ to

$$L_{\omega} x - 1 = (L_{\omega} x) \circ (L_1 x). \tag{1}$$

We first gather symbols $L_{\gamma}x, \gamma < \omega^2$ with $L_1x \rightleftharpoons \log x$ and

$$\forall m, n \in \mathbb{N}, L_{\omega m+n} x = (L_1 x)^{[n]} \circ (L_{\omega} x)^{[m]}$$

Differentiating (1), we get

$$L_{\omega} x)' = \frac{1}{x} \times (L_{\omega} x)' \circ (L_1 x)$$

= $\frac{1}{x \log x} \times (L_{\omega} x)' \circ (L_2 x)$
= $\frac{1}{x (L_1 x) \cdots (L_n x)} \times (L_{\omega} x)' \circ (L_{n+1} x)$
= \dots
 $\stackrel{?}{=} \prod_{n < \omega} (L_n x)^{-1}.$

Logarithmic hyperseries

So one needs to have, as basic symbols, formal products

$$\mathfrak{l} := \prod_{\gamma < \omega^2} (L_{\gamma} x)^{\mathfrak{l}_{\gamma}}, \quad \text{for } (\mathfrak{l}_{\gamma})_{\gamma < \omega^2} \in \mathbb{R}^{\omega^2}$$

Gathering those in a lexicographically ordered group $\mathfrak{L}_{<\omega^2}$ yields a Hahn field $\mathbb{L}_{<\omega^2} = \mathbb{R}[[\mathfrak{L}_{<\omega^2}]].$

Thinking of $l \in \mathfrak{L}_{<\omega^2}$ as the exponential $e^{\sum_{\gamma < \omega^2} l_{\gamma}(L_{\gamma+1}x)}$, we set

$$\mathfrak{l}' = (\log \mathfrak{l})' \mathfrak{l} = \left(\sum_{\gamma < \omega^2} \mathfrak{l}_{\gamma} (L_{\gamma+1} x)' \right) \cdot \mathfrak{l}.$$

This extends into a well-defined derivation ∂ on $\mathbb{L}_{<\omega^2}$. The same rule applies for any ordinal α instead of ω^2 , yielding a field $\mathbb{L}_{<\alpha}$, and a class-sized field $\mathbb{L} := \bigcup_{\alpha \in \mathbf{On}} \mathbb{L}_{<\alpha}$.

Theorem [VAN DEN DRIES, KAPLAN, VAN DER HOEVEN - 2018]

There is a composition law $\circ: \mathbb{L} \times \mathbb{L}^{>\mathbb{R}} \longrightarrow \mathbb{L}$ with $L_{\omega^{\mu+1}}x - 1 = (L_{\omega^{\mu+1}}x) \circ (L_{\omega^{\mu}}x)$ for all ordinals μ . (\mathbb{L}, ∂) is an H-field with small derivation and integration. We have the chain rule for (\circ, ∂) . The formal version of **Conjecture 1** holds in \mathbb{L} .

Hyperexponential closure

Write L_{ω} for the strictly increasing function $\mathbb{L}_{<\omega^2}^{>\mathbb{R}} \longrightarrow \mathbb{L}_{<\omega^2}^{>\mathbb{R}}; f \mapsto \ell_{\omega} \circ f$.

Its right inverse E_{ω} is partially defined, e.g. $E_{\omega}(x)$ is undefined. In order to close $\mathbb{L}_{<\omega^2}^{>\mathbb{R}}$ under E_{ω} , we adjoin formal monomials e_{ω}^{φ} to $\mathfrak{L}_{<\omega^2}$, for certain $\varphi \in \mathbb{L}_{<\omega^2} \setminus L_{\omega}(\mathbb{L}_{<\omega^2}^{>\mathbb{R}})$.

When should $E_{\omega}(\varphi)$ be a new monomial e_{ω}^{φ} ? Idea: If $E_{\omega}(\varphi)$ is defined and $\varepsilon \prec \frac{1}{(L_n x) \circ E_{\omega}(\varphi)}$ for some $n \in \mathbb{N}$, then $E_{\omega}(\varphi + \varepsilon)$ is defined using Taylor expansions and exponentiation.

So it is enough to add $\mathbf{e}^{\varphi}_{\omega}$ for representatives φ in each convex hull

$$\mathcal{L}(g) := \operatorname{Conv}\left(\left\{g \pm \frac{1}{(L_n x) \circ E_{\omega}(\varphi)} : n \in \mathbb{N}\right\}\right).$$

Those can be defined without reference to E_{ω} . For any two distinct representatives φ , ψ , the EL-classes of e_{ω}^{φ} and e_{ω}^{ψ} should be disjoint. This determines an ordering of the extension of $\mathfrak{L}_{\langle \omega^2 \rangle}$ by monomials e_{ω}^{φ} .

Theorem [B.-VDHOEVEN-KAPLAN]

There is a minimal extension $\tilde{\mathbb{L}}$ of \mathbb{L} , and an extension $\circ: \mathbb{L} \times \tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}$ of the composition law on \mathbb{L} , for which each $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $g \mapsto \ell_{\gamma} \circ g$ for $\gamma \in \mathbf{On}$ is bijective.

 $\tilde{\mathbb{L}}$ is obtained by iteratively adjoining hyperexponentials $E_{\omega^{\mu}}(\varphi)$ of hyperseries φ , and taking an increasing union indexed by all ordinals.

So any $f \in \mathbb{\tilde{L}}$ has a concrete expression involving $L_{\gamma} x$'s, E_{γ} 's, real numbers, and transfinite sums. E.g.

Work in progress [B.]

There is a derivation $\tilde{\partial}: \mathbb{\tilde{L}} \longrightarrow \mathbb{\tilde{L}}$ such that $(\mathbb{\tilde{L}}, \partial)$ is an elementary extension of the field \mathbb{T} of log-exp transseries.

Work in progress [B.]

There is a composition law $\tilde{\circ}: \mathbb{\tilde{L}} \times \mathbb{\tilde{L}}^{>\mathbb{R}} \longrightarrow \mathbb{\tilde{L}}$ such that $(\tilde{\partial}, \tilde{\circ})$ satisfies the chain rule.

Strongly linear algebra

Problem: making sense of those complicated transfinite sums. We use strongly linear algebra: a set of order theoretic results regarding a formal summability notion.

Idea: Hahn series fields are "formal" Banach spaces. Two illustrations (VAN DER HOEVEN):

• If $\Psi: \mathbb{R}[[\mathfrak{M}]] \longrightarrow \mathbb{R}[[\mathfrak{M}]]$ is strongly linear and *contracting*, i.e. $\Psi(s) \prec s$ for all $s \in \mathbb{R}[[\mathfrak{M}]]^{\neq}$, then $\mathrm{Id} + \Psi$ has a strongly linear functional inverse

$$(\mathrm{Id} + \Psi)^{[-1]}(s) = \sum_{k \in \mathbb{N}} (-1)^k \Psi^{[k]}(s).$$

• We have a strongly linear implicit function theorem.

The ordered group $(\mathbb{\tilde{L}}^{>\mathbb{R}}, \circ, x, <)$

Work in progress [B.]

The class $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is a linearly bi-ordered group: $f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$ has an inverse in $\tilde{\mathbb{L}}^{>\mathbb{R}}$ and each function $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $g \mapsto f \circ g$ is strictly increasing.

Work in progress [B.]

Any two series $f, g \in \mathbb{\tilde{L}}^{>\mathbb{R}}$ with f, g > x are conjugate, i.e. satisfy

 $V\circ f=g\circ V$

for a certain $V \in \mathbb{\tilde{L}}^{>\mathbb{R}}$. E.g. e^x and x+1 are conjugate via $(L_{\omega}x) \circ e^x = (x+1) \circ L_{\omega}x$.

Real iterates: for each $f \in \tilde{\mathbb{L}}^{>\mathbb{R}}$ with $f \neq x$ there is a unique isomorphism

$$(\mathbb{R},+,<) \longrightarrow (\mathcal{C}(f),\circ,<); r \mapsto f^{[r]}$$

with $f^{[1]} = f$.

What embeddings tell us

Work in progress [B.]

For all $f, g, \delta \in \mathbb{\tilde{L}}$ with $g > \mathbb{R}$, if $\delta \prec g$ and $(\mathfrak{m}' \circ g) \delta \prec \mathfrak{m} \circ g$ for all $\mathfrak{m} \in \operatorname{supp} f$, then

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ g}{k!} \delta^k,$$

where $f \circ g \succ (f' \circ g) \delta \succ (f'' \circ g) \delta^2 \succ \cdots$.

Work in progress [B.]

For all
$$f, g \in \mathbb{\tilde{L}}^{>\mathbb{R}}$$
 with $f, g \neq x$, we have $f \in \mathcal{C}(g) \iff \mathcal{C}(f) = \mathcal{C}(g)$.

Work in progress [B.]

For all
$$f, g \in \mathbb{\tilde{L}}^{>\mathbb{R}}$$
 $f > g^{[\mathbb{N}]} > x$, we have $f \circ g > g \circ f$.

In particular, any Hardy field with composition which embeds into $\bar{\mathbb{L}}$ satisfies the conjecture.

Linearly bi-ordered monoids and groups

23/23

Any Hardy field with composition \mathcal{H} induces a linearly bi-ordered monoid $(\mathcal{H}^{>\mathbb{R}}, \circ, \mathrm{id}, <)$.

Proposition

Let $\mathcal{M}\,{=}\,(M,{\cdot},1,{<})$ be a linearly bi-ordered monoid, let $f,g\,{\in}\,M^{>1}$ and $m,n\,{\in}\,\mathbb{N}^{>}$ with

$$f^m g^n = g^n f^m.$$

Then fg = gf. In particular if $f^m = g^n$, then fg = gf.

If furthermore M is a group, then given $f, g, h \in M$ with $f^m = h^m = g^n$, we have f = h, so we can write $f = g^{[n/_m]}$ and consider it as the $n/_m$ 'th fractional iterate of g.

Question 1. Is \mathcal{M} always contained in a linearly bi-ordered group?

Question 2. Is \mathcal{H} always contained in a Hardy field with composition and with functional inverses for all positive infinite germs? [I think not: find counter example in ADH:icm]