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I - Functions



I.1 - Hardy fields 3/28

asymptotic ≡ as the variable is large enough

We identify two functions f ,g in

�
n∈ℕ

�
r∈ℝ

𝒞 n((r , +∞),ℝ),

if f (r)=g(r) for all sufficiently large r ∈ℝ (written r≫1).

𝒢 : differential ring of equivalence classes, called gggggggggeeeeeeeeerrrrrrrrrmmmmmmmmmsssssssss at +∞.

Germs at +∞

HHHHHHHHHaaaaaaaaarrrrrrrrrdddddddddyyyyyyyyy fififififififififieeeeeeeeellllllllldddddddddsssssssss are differential subfields of 𝒢 containing ℝ. Ordered by

f < g ⇐⇒⇐⇒⇐⇒ ∀r ≫ 1, f (r) < g(r).

E.g. ℝ((x r)r∈ℝ), ℝ(x , arctanx), ℝ(x , ex), and ℝ(logx , log logx).

Definition
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I.2 - Further examples 4/28

Let ℛ =(ℝ,+,×,<,…) be an o-minimal extension of the real ordered field. Write ℋ(ℛ)
for the set of germs at +∞ of functions (a, +∞)→←→ℝ, a ∈ℝ that are definable in ℛ.
Then ℋ(ℛ) is a Hardy field.

O-minimality and Hardy fields

In particular ℋ(ℝexp) is a Hardy field.

A Hardy field ℋ is said mmmmmmmmmaaaaaaaaaxxxxxxxxxiiiiiiiiimmmmmmmmmaaaaaaaaalllllllll if it has no proper superset which is a Hardy field.

Conjecture 1 (ADH): The structure (ℋ, +,×,<,*, ∂) is elementarily equivalent to
the field of log-exp transseries.

Conjecture 2 (ADH): For all countable subsets L,R ⊂−ℋ with L<R, there is an f ∈ℋ
with L< f <R.

Maximal Hardy fields
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I.3 - Hyperexponentials 5/28

There is a strictly increasing analytic function Eω:ℝ→←→ℝ which solves AAAAAAAAAbbbbbbbbbeeeeeeeeelllllllll'''''''''sssssssss eeeeeeeeeqqqqqqqqquuuuuuuuuaaaaaaaaa---------
tttttttttiiiiiiiiiooooooooonnnnnnnnn:

∀r ≫ 1,Eω(r +1) = exp(Eω(r)).

Theorem [H. Kneser - 1949]

We have Eω(r)>ee
e
. . .
er

for r≫1: Eω is a hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrreeeeeeeeexxxxxxxxxpppppppppooooooooonnnnnnnnneeeeeeeeennnnnnnnntttttttttiiiiiiiiiaaaaaaaaalllllllll function.

ℝ(Eω,Eώ,Eώ́,…) is a Hardy field.
Theorem [Boschernitzan - 1986]

There is a Hardy field ℋ containing ℋan,exp, the germ of Eω, its inverse Lω, and which is
closed under composition of germs.

Theorem [Padgett - 2022]
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ℝ(Eω,Eώ,Eώ́,…) is a Hardy field.
Theorem [Boschernitzan - 1986]

There is a Hardy field ℋ containing ℋan,exp, the germ of Eω, its inverse Lω, and which is
closed under composition of germs.

Theorem [Padgett - 2022]



I.3 - Hyperexponentials 5/28

There is a strictly increasing analytic function Eω:ℝ→←→ℝ which solves AAAAAAAAAbbbbbbbbbeeeeeeeeelllllllll'''''''''sssssssss eeeeeeeeeqqqqqqqqquuuuuuuuuaaaaaaaaa---------
tttttttttiiiiiiiiiooooooooonnnnnnnnn:

∀r ≫ 1,Eω(r +1) = exp(Eω(r)).

Theorem [H. Kneser - 1949]

We have Eω(r)>ee
e
. . .
er

for r≫1: Eω is a hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrreeeeeeeeexxxxxxxxxpppppppppooooooooonnnnnnnnneeeeeeeeennnnnnnnntttttttttiiiiiiiiiaaaaaaaaalllllllll function.
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II.1 - Hahn series 7/28

Let (𝔐, ×,*) be a linearly ordered abelian group. The HHHHHHHHHaaaaaaaaahhhhhhhhhnnnnnnnnn ssssssssseeeeeeeeerrrrrrrrriiiiiiiiieeeeeeeeesssssssss field ℝ[[𝔐]] is
the class of functions f :𝔐→←→ℝ whose support

supp f := {𝔪∈𝔐 : f (𝔪)≠0} ⊂− 𝔐

is a well-ordered subset of (𝔐,+). ℝ[[𝔐]] is an ordered valued field.

Definition: Hahn series [Hahn - 1907]
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is a well-ordered subset of (𝔐,+). ℝ[[𝔐]] is an ordered valued field:

Pointwise sum / Cauchy product:

(f +g)=𝔪↦←→ f (𝔪)+g(𝔪) / (f g)=𝔪↦←→∑𝔲𝔳=𝔪 f (𝔲)g(𝔳)

Order / valuation:

0< f ⇐⇒⇐⇒⇐⇒0< f (maxsupp f ) / f *g⇐⇒⇐⇒⇐⇒maxsupp f *maxsuppg

Identification:

Each f ∈ℝ[[𝔐]] is seen as the formal series f ≡∑𝔪∈𝔐 f𝔪 𝔪.

Definition: Hahn series [Hahn - 1907]



II.2 - Summable families 8/28

Fix a Hahn series field 𝕊=ℝ[[𝔐]]. Idea: infinite pointwise sums in 𝕊.

Let I be a set, and let (fi)i∈I ∈𝕊I be a family. We say that (fi)i∈I is sssssssssuuuuuuuuummmmmmmmmmmmmmmmmmaaaaaaaaabbbbbbbbbllllllllleeeeeeeee if

i. The set ⋃i∈I supp fi is well-ordered in (𝔐,+).

ii. For all 𝔪∈𝔐, the set I𝔪 :={i∈ I :𝔪∈supp fi} is finite.

Then the following is a well-defined element of 𝕊:

�
i∈I

fi := �
𝔪∈𝔐 ((((((((((�

i∈I𝔪

fi(𝔪)))))))))))𝔪.

Definition

[B. Neumann - 1949] For (an)n∈ℕ∈ℝℕ and ε*1, the family (an εn)n∈ℕ is summable.

e.g. 1
1+ ε = �

n∈ℕ
(−1)n εn.



II.2 - Summable families 8/28

Fix a Hahn series field 𝕊=ℝ[[𝔐]]. Idea: infinite pointwise sums in 𝕊.

Let I be a set, and let (fi)i∈I ∈𝕊I be a family. We say that (fi)i∈I is sssssssssuuuuuuuuummmmmmmmmmmmmmmmmmaaaaaaaaabbbbbbbbbllllllllleeeeeeeee if

i. The set ⋃i∈I supp fi is well-ordered in (𝔐,+).

ii. For all 𝔪∈𝔐, the set I𝔪 :={i∈ I :𝔪∈supp fi} is finite.

Then the following is a well-defined element of 𝕊:

�
i∈I

fi := �
𝔪∈𝔐 ((((((((((�

i∈I𝔪

fi(𝔪)))))))))))𝔪.

Definition

[B. Neumann - 1949] For (an)n∈ℕ∈ℝℕ and ε*1, the family (an εn)n∈ℕ is summable.

e.g. 1
1+ ε = �

n∈ℕ
(−1)n εn.



II.3 - Transseries 9/28

Field 𝕋LE of llllllllloooooooooggggggggg---------eeeeeeeeexxxxxxxxxppppppppp tttttttttrrrrrrrrraaaaaaaaannnnnnnnnsssssssssssssssssseeeeeeeeerrrrrrrrriiiiiiiiieeeeeeeeesssssssss: Hahn series involving formal terms x, logx and ex
and combinations thereof.

e.g. f := �
n=1

+∞

n! e /x n+log2x +7+x−2 logx +�
p=0

+∞

e−x
p+1

x p is a log-exp transseries.

The number of iterations of exp and log must be uniformly bounded.

Log-exp transseries [Dahn, Göring - 1987 and Ecalle - 1992]

𝕋LE enjoys a dddddddddeeeeeeeeerrrrrrrrriiiiiiiiivvvvvvvvvaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn ∂:𝕋LE→←→𝕋LE which acts termwise, e.g.

∂ f = �
n=1

+∞

(n−1)! e /x n+ 1
x logx −2x−3 logx +x−3+�

p=0

+∞

(px p−1−(p+1)x p)e−x
p+1

Structure
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II.4 - Cuts in transseries 10/28

• A cccccccccuuuuuuuuuttttttttt (in 𝕋LE) is an �-initial subset c ⊂−𝕋LE without supremum in (𝕋LE,�)

• Monotonous operations c1+c2,c1×c2, ec1 on cuts c1,c2. Also ∂(c1) for certain cuts.
Problem: cut operations behave quite differently as standard operations.

“Good” way to define operations on cuts? Yes: surreal numbers.

• Classification of cuts in 𝕋g ⊂−/ 𝕋LE using the cut operations and transseries f ∈𝕋g.

Cuts inTLE [van der Hoeven - 2006]



II.5 - Cuts, functional equations, and solutions 11/28

A) “Horizontal” cuts related to missing pseudo-limits:

L := {f : ∃n∈ℕ, f < logx +log2x +⋯+lognx}

Λ := {{{{{{{{{{{{f : ∃n∈ℕ, f < 1
x +

1
x logx +⋯+ 1

x logx⋯lognx}}}}}}}}}}}}
Γ := e−L = {{{{{{{{{{{{f : ∀n ∈ℕ, f < 1

x logx⋯lognx}}}}}}}}}}}}.

The difference equation

f − f ∘ logx = logx (ℰh)

has no solution in 𝕋LE. Any solution f in 𝕋⊃−/ 𝕋LE fills L.

Solution: f = logx +log2x +⋯ in ℝ[[𝔐]]⊃−𝕋LE. We have ∂(L)=Λ; we expect that

∂(logx + log2x +⋯) = 1
x +

1
x logx +⋯+ 1

x logx ⋯lognx
+⋯

Horizontal cuts / difference equations / Hahn series
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II.5 - Cuts, functional equations, and solutions 11/28

B) “Vertical” cuts

Ω := 𝕋LE = �f : ∃n ∈ℕ, f <e. .
.ex (n times)�

∞ = {f : ∃r ∈ℝ, f < r} = {f : ∀n∈ℕ, f < lognx}.

The formal version of Abel's equations

f ∘(x +1) = ex ∘ f (ℰv
+) and f ∘ logx = f −1 (ℰv

−)

have no solution in 𝕋LE. Any solution of (ℰv
+) (resp. (ℰv

−)) fills Ω (resp. ∞).

Solutions: “hyperexponential” fv+=eω and “hyperlogarithm” fv−= ℓω.

Note that ∂(∞)=Γ. Indeed we expect that

∂(ℓω) = 1
x logx ⋯lognx ⋯

.

Vertical cuts / conjugation equations / hyperseries
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II.5 - Cuts, functional equations, and solutions 11/28

C) “Oblique” cuts

N := �f : ∃n∈ℕ, f <x +e logx� +e. .
. lognx�

�.

The equation

f = x +ef ∘logx f ∼ x (ℰo)

has no solution in 𝕋LE. Any solution fo of (ℰo) would fill N.

Solutions: “Syntactic” solutions

fo = x +e logx� +e log2x� +e. .
.

.

[Schmeling - 2001]: It is consistent to consider fields of transseries containing fo.

Oblique cuts / mixed equations / nested series
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II.6 - Hyperseries 12/28

Schmeling defines a Hahn series field ℍ<ω with functions Eωk, Lωk for all k ∈ℕ, where

Eωk ∘Lωk = Lωk ∘Eωk = idℍ<ω, and
Eωk+1(s+1) = Eωk ∘Eωk+1(s) for all k ∈ ℕ and s ∈ ℍ<ω

>ℝ.

A field of hyperseries [Schmeling - 2001]

Field (𝕃, ʹ, ∘) of lllllllllooooooooogggggggggaaaaaaaaarrrrrrrrriiiiiiiiittttttttthhhhhhhhhmmmmmmmmmiiiiiiiiiccccccccc hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrrssssssssseeeeeeeeerrrrrrrrriiiiiiiiieeeeeeeeesssssssss, given as 𝕃=ℝ[[𝔏]] where

𝔏 is the group of formal products 𝔩 = �
γ <ρ

ℓγ
𝔩γ , (𝔩γ)γ <ρ ∈ ℝρ,

(lexicographic order and pointwise product). Set ℓωμ+γ := ℓγ ∘ ℓωμ for all γ <ωμ+1 and

ℓρ́ = 1
∏γ<ρ ℓγ

ℓωμ+1 ∘ ℓωμ = ℓωμ+1−1.

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2019]
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II.7 - Hyperserial fields 13/28

A hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrrssssssssseeeeeeeeerrrrrrrrriiiiiiiiiaaaaaaaaalllllllll fififififififififieeeeeeeeelllllllllddddddddd is a Hahn series field 𝕋=ℝ[[𝔐]] endowed with a function

∘:𝕃×𝕋>ℝ→←→𝕋, called the composition law,

which satisfies (among other technical details), for all f ∈𝕃:

Compatibility For all s ∈𝕋>ℝ, the function h↦←→ h ∘ s: 𝕃→←→𝕋 is a ring morphism
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Let 𝕋=ℝ[[𝔐]] be a hyperserial field, let f ∈𝕃 and s ∈𝕋>ℝ. We note that

1. The series f ∘ s is determined by the class of series ℓωμ ∘ t for all μ ∈On and t ∈𝕋>ℝ.

Goal: Defining 𝔐α as in 3, find conditions on partial functions

Lα:𝔐α →←→𝕋;𝔞↦ ℓα ∘𝔞, α = ωμ,μ ∈ On

so that (Lα)α=ωμ,μ∈On determine a composition law ∘:𝕃×𝕋>ℝ→←→𝕋.
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Let 𝕋=ℝ[[𝔐]] and let Lα ,α ∈ωOn be partial functions Lα:𝔐α →←→𝕋. Consider a law

ℝ×𝔐→←→𝔐; (r ,𝔪)↦𝔪r

of ordered ℝ-vector space on 𝔐, called the rrrrrrrrreeeeeeeeeaaaaaaaaalllllllll pppppppppooooooooowwwwwwwwweeeeeeeeerrrrrrrrriiiiiiiiinnnnnnnnnggggggggg ooooooooopppppppppeeeeeeeeerrrrrrrrraaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn on 𝔐.

Our conditions on Lα are inequalities, the identities for the logarithm, and the restricted
Abel equations:

Lωμ+1(Lωμ(𝔞)) = Lωμ+1(𝔞)−1 for all μ ∈ On and 𝔞 ∈ 𝔐ωμ+1.

Assume that for all μ∈On, each s∈𝕋>ℝ is « sufficiently close » to an 𝔞s∈𝔐ωμ. Then there
is a unique function ∘:𝕃×𝕋>ℝ→←→𝕋 with ℓωμ ∘𝔞=Lωμ(𝔞) for all μ∈On and 𝔞∈𝔐ωμ, and
such that (𝕋, ∘) is a hyperserial field.

Theorem
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following function is bijective:

Lωμ:𝕋>ℝ→←→𝕋>ℝ; s↦ ℓωμ ∘ s.

There is a hyperexponentially closed extension ι: 𝕋→←→�̃� such that for each hyper-
exponentially closed extension φ: 𝕋→←→𝕌, there is a unique embedding ψ : 𝕌→←→�̃�
with φ=ψ ∘ ι.

𝕋 →←→
ι

�̃�
φ↘ ↓ ∃!ψ

𝕌

Theorem



II.10 - Hyperexponential closure 16/28

A hyperserial field (𝕋, ∘) is said hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrreeeeeeeeexxxxxxxxxpppppppppooooooooonnnnnnnnneeeeeeeeennnnnnnnntttttttttiiiiiiiiiaaaaaaaaallllllllllllllllllyyyyyyyyy ccccccccclllllllllooooooooossssssssseeeeeeeeeddddddddd if for all μ ∈On, the
following function is bijective:

Lωμ:𝕋>ℝ→←→𝕋>ℝ; s↦ ℓωμ ∘ s.

There is a hyperexponentially closed extension ι: 𝕋→←→�̃� such that for each hyper-
exponentially closed extension φ: 𝕋→←→𝕌, there is a unique embedding ψ : 𝕌→←→�̃�
with φ=ψ ∘ ι.

𝕋 →←→
ι

�̃�
φ↘ ↓ ∃!ψ

𝕌

Theorem



III - Numbers



III.1 - Surreal numbers 18/28

Conway's class No of surreal numbers. Underlying order: lexicographically ordered
complete binary tree {−1,1}<On whose depths are arbitrary ordinals.

0

1 2
43

ω/23ω−1

ω2

2ω

1−ω−1

ω√

/ω 2

/12
/78 /74

/32

ω +1ω −1
ω + /12

2ω−1ω −1

2

ω−2

ω−ω

1
ω√

/34/14 /38/18 /54 /52/58

c

0
1
2
3

ω

ω ⋅ 2

ω2

simplicity

�

⊃⊂− −

a

magnitude

b
depth

⋮

Simplicity: a is sssssssssiiiiiiiiimmmmmmmmmpppppppppllllllllleeeeeeeeerrrrrrrrr than b, written a ⊃⊂− −b, if there is a (descending) path from a
to b in the tree.
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III.2 - Inductive definitions 19/28

For all sets of numbers L,R with L<R, there is a unique ⊃⊂− -minimal number {L ∣ R} with

L < {L ∣ R} < R.

Equivalently: [order saturation + any non-empty convex subclass has a ⊃⊂− -minimum]

Fundamental property of (No,<,⊃⊂− )

For a∈No, we have two sets aL :={b∈No:b<a,b ⊃⊂
−

−a} and aR :={b∈No:b>a,b⊃⊂

−

−a}.

So a={aL ∣ aR}. The partial order (No, ⊃⊂

−

−) is well-founded →←→ inductive definitions.

Well-founded order

Inductive definition of the sum a+b of numbers a,b:

Inductive hypothesis: aL+b, a+bL and a+bR, aR+b are defined.

Surreal arithmetic [Conway - 1976]
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For a∈No, we have two sets aL :={b∈No:b<a,b ⊃⊂
−

−a} and aR :={b∈No:b>a,b⊃⊂

−

−a}.

So a={aL ∣ aR}. The partial order (No, ⊃⊂

−

−) is well-founded →←→ inductive definitions.

Well-founded order

Inductive definition of the sum a+b of numbers a,b. We thus set

a+ba+b :={aL+b,a+bLaL+b,a+bL ∣ a+bR,aR+ba+bR,aR+b}.

Surreal arithmetic [Conway - 1976]
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III.3 - Valuation theory of No 20/28

For each a∈No×, there is a simplest 𝔡a ∈No> with v𝔡a=va (natural valuation). We set

Mo := {𝔡a :a ∈No×} ⊂− No>0: class of mmmmmmmmmooooooooonnnnnnnnnooooooooommmmmmmmmiiiiiiiiiaaaaaaaaalllllllllsssssssss

Mo is a subgroup of (No>0, ×) with a natural isomorphism (vNo×, <)∼−(Mo,>).

Monomials [Conway - 1976]

(No, <) is saturated → (No, +, ×,v) is spherically complete. If u is a pseudo-Cauchy
sequence in No, then its convex class of pseudo-limits has a ⊃⊂− −-minimum simplimu.

For f =∑γ <ρ fγ 𝔪γ ∈ℝ[[Mo]], define f̂ ∈No by induction on ρ ∈On:

f̂ := �
γ <β

fγ 𝔪γ + fβ 𝔪β if ρ = β +1 is a successor ordinal, and

f̂ := simplim((((((((((((�
γ <σ

fγ 𝔪γ))))))))))))
σ<ρ

if ρ is a limit ordinal.

Then ℝ[[Mo]]→←→No; f ↦ f̂ is an isomorphism of ordered valued fields.



III.3 - Valuation theory of No 20/28

For each a∈No×, there is a simplest 𝔡a ∈No> with v𝔡a=va (natural valuation). We set

Mo := {𝔡a :a ∈No×} ⊂− No>0: class of mmmmmmmmmooooooooonnnnnnnnnooooooooommmmmmmmmiiiiiiiiiaaaaaaaaalllllllllsssssssss

Mo is a subgroup of (No>0, ×) with a natural isomorphism (vNo×, <)∼−(Mo,>).

Monomials [Conway - 1976]

(No, <) is saturated → (No, +, ×,v) is spherically complete. If u is a pseudo-Cauchy
sequence in No, then its convex class of pseudo-limits has a ⊃⊂− −-minimum simplimu.

For f =∑γ <ρ fγ 𝔪γ ∈ℝ[[Mo]], define f̂ ∈No by induction on ρ ∈On:

f̂ := �
γ <β

fγ 𝔪γ + fβ 𝔪β if ρ = β +1 is a successor ordinal, and

f̂ := simplim((((((((((((�
γ <σ

fγ 𝔪γ))))))))))))
σ<ρ

if ρ is a limit ordinal.

Then ℝ[[Mo]]→←→No; f ↦ f̂ is an isomorphism of ordered valued fields.



III.3 - Valuation theory of No 20/28

For each a∈No×, there is a simplest 𝔡a ∈No> with v𝔡a=va (natural valuation). We set

Mo := {𝔡a :a ∈No×} ⊂− No>0: class of mmmmmmmmmooooooooonnnnnnnnnooooooooommmmmmmmmiiiiiiiiiaaaaaaaaalllllllllsssssssss

Mo is a subgroup of (No>0, ×) with a natural isomorphism (vNo×, <)∼−(Mo,>).

Monomials [Conway - 1976]

(No, <) is saturated → (No, +, ×,v) is spherically complete. If u is a pseudo-Cauchy
sequence in No, then its convex class of pseudo-limits has a ⊃⊂− −-minimum simplimu.

For f =∑γ <ρ fγ 𝔪γ ∈ℝ[[Mo]], define f̂ ∈No by induction on ρ ∈On:

f̂ := �
γ <β

fγ 𝔪γ + fβ 𝔪β if ρ = β +1 is a successor ordinal, and

f̂ := simplim((((((((((((�
γ <σ

fγ 𝔪γ))))))))))))
σ<ρ

if ρ is a limit ordinal.

Then ℝ[[Mo]]→←→No; f ↦ f̂ is an isomorphism of ordered valued fields.



III.4 - Surreal exponentiation 21/28

For a∈No and n∈ℕ, set [a]n :=∑k�n
ak

k! . The function

EEEEEEEEE111111111(a) := {{{{{{{{{{{{EEEEEEEEE111111111(aL) [a−aL]ℕ , EEEEEEEEE111111111(aR) [a−aR]2ℕ+1 � EEEEEEEEE111111111(aR)
[aR−a]2ℕ+1

, EEEEEEEEE111111111(aL)
[aL−a]ℕ}}}}}}}}}}}}

is an isomorphism (No, +,<)→ (No>0, ×,<). Set En=E1∘n and Ln=E1
∘(−n) for all n∈ℕ.

Exponential [Gonshor - 1986]

The exponential interacts with the structure of Hahn series field as follows:

Mo = E1(ℝ[[Mo>1]])

∀ε * 1,E1(ε) = �
k∈ℕ

1
k! ε

k.

[Berarducci, S. Kuhlmann, Mantova and Matusinski - 2019]: How to use these
properties to define more general exponential and logarithmic functions on fields of
Hahn series.
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III.5 - Transseries and cuts as numbers 22/28

[Berarducci, Mantova - 2017]: There is a unique embedding 𝕋LE→←→No which
commutes with transfinite sums and exponentials, and sends x to ω.

numbers as generalized transseries→ filling cuts c≡(L,R) in𝕋LEwith numbers {L ∣ R}?

We have En(ω)=ω . . .ω (n times) for all n ∈ℕ. So the number

ε0 = {ω,ωω,ωωω,… ∣ ∅}

is the simplest « transexponential » number. Candidate for eω in No?

Vertical cuts as numbers

Candidate for fo: the corresponding number

�ω,ω +e logω� ,ω+e logω� +e log2ω�

, … � …,ω +e logω� +er log2ω�

,ω+er logω� , rω : r >1�.

Nested cuts as numbers
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III.6 - Surreal substructures 23/28

A surreal substructure is a class S⊂−No such that (S,�, ⊃⊂− −) and (No,�, ⊃⊂− −) are isomor-
phic. There is a unique such isomorphism ΞS:No→←→ S.

Definition

→←→ each a∈S is determined by its « label » z in a=ΞS(z).

Numerous classes involved in the study of No are surreal substructures:

• The class No>ℝ of positive infinite numbers.

• The class No* of infinitesimals.

• The classMo of monomials.

• The class ℝ[[Mo>1]]=L1(Mo) of so-called purely infinite numbers.

• The classMoω=⋂n∈ℕEn(Mo) of « log-atomic » numbers.
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III.7 - Surreal hyperexponentiation (1) 24/28

The first hyperlogarithm Lω:No>ℝ→←→No>ℝ can be defined using simple rules:

• We must have Lώ=
1

L0L1L2L3⋯
, so Lώ́=−∑k∈ℕ

1
LkLk+1⋯

, and so on.. .

• Let a∈No>ℝ. We assume that Lω(a) is defined, and try to define Lω(a+ ε) for each
ε *1. The family �Lω

(k)(a) εk�k>0 is summable. So we set

Lω(a+ ε) := �
k�0

Lω
(k)(a)
k! εk.

Define Lω on a class S with ∀b ∈No>ℝ, ∃n∈ℕ, Ln(b) :=a+ ε ∈S+No*1. Then

Lω(b) = Lω(En(a+ ε)) =
Abel eq

n+Lω(a+ ε) = n+�
k=0

+∞
Lω
(k)(a)
k! εk.

Defining Lω on No [with van der Hoeven and Mantova]
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III.8 - Surreal hyperexponentiation (2) 25/28

The classMoω of log-atomic numbers satisfies the previous conditions. For a,b∈No>ℝ
with a<b, we require

Lω(a) < Ln(a) and
Lω(a) < Lω(b),

which calls for the following inductive definition of Lω:

∀𝔞 ∈ Moω,Lω(𝔞) := {{{{{{{{{{{{Lω(𝔞ʹ)+ 1
Ln(𝔞ʹ)

� Lω(𝔞ʹʹ)−
1

Ln(𝔞ʹʹ)
,Ln(𝔞)}}}}}}}}}}}},

for generic 𝔞ʹ, 𝔞ʹʹ with 𝔞ʹ,𝔞ʹʹ ∈Moω, 𝔞ʹ,𝔞ʹʹ ⊃⊂− −𝔞, 𝔞ʹ <𝔞<𝔞ʹʹ and n ∈ℕ.

This generalizes to Lωμ for each μ ∈On. We obtain a composition law

∘: �̃� ×No>ℝ→←→No. (�̃�⊂−/ No)

Theorem
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III.9 - Hyperserial expansions 26/28

For 𝔪∈Mo≠1, there are α ,β ∈On, u,ψ ∈No, ι ∈{−1,1} such that 𝔪 expands uniquely as

𝔪 = eψ (LβEαu)ι ( = exp(ψ)×(Lβ(Eα(u)))ι ).

Hyperserial expansions

Fix a0∈No×. At each stage i, pick a term ri𝔪i in ai seen as a Hahn series, and expand it as

ri𝔪i = ri eψi (LβiEαi
ui)ιi.

Then choose ai+1∈ {ψi,ui} with the restrictions

(ψi = 0 ⇒⇐⇒ ai ≠ ψi) and (Eαi
ui = ω ⇒⇐⇒ ai ≠ ui)

This defines a pppppppppaaaaaaaaattttttttthhhhhhhhh (𝔪i)i<ℓ, ℓ �ω in a0 (ℓ <ω if and only if 𝔪i=(Lβi(ω))ιi for some i).

Constructing paths in numbers
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For 𝔪∈Mo≠1, there are α ,β ∈On, u,ψ ∈No, ι ∈{−1,1} such that 𝔪 expands uniquely as

𝔪 = eψ (LβEαu)ι ( = exp(ψ)×(Lβ(Eα(u)))ι ).

Hyperserial expansions

Fix a0∈No×. At each stage i, pick a term ri𝔪i in ai seen as a Hahn series, and expand it as

ri𝔪i = ±eψi ( Eαi
ui)ιi.

Then choose ai+1∈ {ψi,ui} with the restrictions

(ψi = 0 ⇒⇐⇒ ai ≠ ψi) and (Eαi
ui = ω ⇒⇐⇒ ai ≠ ui)

This defines a pppppppppaaaaaaaaattttttttthhhhhhhhh (𝔪i)i<ℓ in a0. It is wwwwwwwwweeeeeeeeellllllllllllllllll---------nnnnnnnnneeeeeeeeesssssssssttttttttteeeeeeeeeddddddddd if for large enough i, we have

βi = 0 , 𝔪i+1 ∉ suppψi , 𝔪i+1 = minsuppui , and ri ∈ {−1,1}.

Constructing paths in numbers



III.10 - Numbers as hyperseries 27/28

A) existence of infinite paths → yes, e.g. there are numbers a0∈No which expand as

a0 = ω +E1
L1(ω)� +e L2(ω)� Eω

Lω(ω)� +e Lω2(ω)� Eω 2
. . .. . .. . .. . .. . .. . .. . .. . .. . .

Describing numbers as hyperseries
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B) s e of infinite paths → well-nested paths

Describing numbers as hyperseries



III.10 - Numbers as hyperseries 27/28

C) mutiplicity of numbers with a given expansion→ by B), infinite expansions end up as

ai = φi±eψi �Eαi
φi+1±(Eαi+1

... )ιi+1�
ιi, for large enough i, for some φi's.

Theorem: For large enough i, numbers which expand as ai form a surreal substructure.

Describing numbers as hyperseries
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A) existence of infinite paths → yes

B) s e of infinite paths → well-nested paths

C) mutiplicity of numbers with a given expansion? → ultimately ∼−No

Describing numbers as hyperseries

Using this description of paths, one can represent any surreal number a as a tree labelled
by real and ordinal numbers

Theorem



Thank you!


