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Germs at +oo

asymptotic = as the variable is large enough

We identify two functions f, g in

N U e((r.+0)R),

nelN reR

if f(r)=g(r) for all sufficiently large r €R (written r>1).

G differential ring of equivalence classes, called germs at +oo.
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Germs at +oo
asymptotic = as the variable is large enough

We identify two functions f, g in

N U e((r.+0)R),

nelN reR

if f(r)=g(r) for all sufficiently large r €R (written r>1).

G differential ring of equivalence classes, called germs at +oo.

Definition
Hardy fields are differential subfields of (; containing R. Ordered by

f<g=vr>1f(r) < g).

E.g. R((x")rer), R(x,arctan x), R(x,e*), and R(log x,loglog x).
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O-minimality and Hardy fields

Let R =(R,+,x,<,...) be an o-minimal extension of the real ordered field. Write H(R)
for the set of germs at +oo of functions (a,+o00) —— R, a€R that are definable in XR.
Then H(R) is a Hardy field.

In particular #{(Rexp) is a Hardy field.
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O-minimality and Hardy fields

Let R=(R,+,x,<,...) be an o-minimal extension of the real ordered field. Write }H(XR)
for the set of germs at +oo of functions (a,+o00) —— R, a€R that are definable in XR.
Then H(R) is a Hardy field.

In particular #{(Rexp) is a Hardy field.

Maximal Hardy fields

A Hardy field H is said maximal if it has no proper superset which is a Hardy field.

Conjecture 1 (ADH): The structure (H,+, x,<,<,9) is elementarily equivalent to
the field of log-exp transseries.

Conjecture 2 (ADH):  For all countable subsets L,R< H with L<R, there isan f € H
with L< f <R.
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Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function E,;:R —— R which solves Abel's equa-
tion:

Vr > LE,(r+1) = exp(E,(r)).

-er

We have E(r) ~e® for r>1: E,is a hyperexponential function.
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Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function E,;:R —— R which solves Abel's equa-
tion:

Vr > LE,(r+1) = exp(E,(r)).

er

We have E(r) ~e® for r>1: E,is a hyperexponential function.

Theorem [Boschernitzan - 1986]
R(E,, E.,E.,...) is a Hardy field.

Theorem [Padgett - 2022]

There is a Hardy field H containing Hay exp, the germ of E,,, its inverse L, and which is
closed under composition of germs.
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Definition: Hahn series [Hahn - 1907]

Let (9, x,<) be a linearly ordered abelian group. The Hahn series field R[[9]] is
the class of functions f:9t —— R whose support

supp f = {m€M:f(m)#0} < M

is a well-ordered subset of (9M,>). R[[]] is an ordered valued field.
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Definition: Hahn series [Hahn - 1907]

Let (9, x,<) be a linearly ordered abelian group. The Hahn series field R[[9]] is
the class of functions f:9t —— R whose support

supp f = {m€M:f(m)#0} < M

is a well-ordered subset of (9M,>). R[[IM]] is an ordered valued field:
Pointwise sum / Cauchy product:

(f+rg)=m—— f(m)+g(m) / (f&=mr——) S (1)g(v)

Order / valuation:

O<fe=0<f(maxsuppf) / [f=<g<+< maxsuppf<maxsuppg

Identification:

Each f €R[[IN]] is seen as the formal series f =) o, fam.



1.2 - Summable families s

Fix a Hahn series field $=R[[91]]. Idea: infinite pointwise sums in S.

Let I be a set, and let (f;)icr€S! be a family. We say that (f;);c; is summable if
i. The set | J,.;supp fi is well-ordered in (90, >).
ii. For all meM, the set I,:={i€l:mEsupp fi} is finite.

Then the following is a well-defined element of S:

> fi= Y (Zﬁ(m))m.

i€l meMm \i€l,
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Fix a Hahn series field $=R[[91]]. Idea: infinite pointwise sums in S.

Let I be a set, and let (f;)icr€S! be a family. We say that (f;);c; is summable if
i. The set | J,.;supp fi is well-ordered in (90, >).
ii. For all meM, the set I,:={i€l:mEsupp fi} is finite.

Then the following is a well-defined element of S:

> fi= Y (Zﬁ(m))m.

i€l meMm \i€l,

[B. Neumann - 1949] For (a,).ew €RN and e<1, the family (a,e")pen is summable.




1.3 - Transseries 0/28

Log-exp transseries [Dahn, Goring - 1987 and Ecalle - 1992]

Field T1g of log-exp transseries: Hahn series involving formal terms x, log x and e*
and combinations thereof.

+00 +00
X _ _Lpr1 . .
e.g. [ := Z n!e/"+log2x+7+x 210gx+Z e ™ xP isalog-exp transseries.
n=1 p=0

The number of iterations of exp and log must be uniformly bounded.
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Log-exp transseries [Dahn, Goring - 1987 and Ecalle - 1992]

Field T1g of log-exp transseries: Hahn series involving formal terms x, log x and e*
and combinations thereof.

+00 +00
X _ _Lpr1 . .
e.g. [ := Z n!e/"+log2x+7+x 2logx+Z e ™ xP isalog-exp transseries.
n=1 p=0

The number of iterations of exp and log must be uniformly bounded.

Tig enjoys a derivation 0: Ty —— Trg which acts termwise, e.g.

_xp+1

—2x‘3logx+x‘3+z (pxP1-(p+1)xP)e

xlog x =

+00
of = Z (n—l)!ex/”+
n=1
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Log-exp transseries [Dahn, Goring - 1987 and Ecalle - 1992]

Field T1g of log-exp transseries: Hahn series involving formal terms x, log x and e*
and combinations thereof.

+00 +00
X _ _Lpr1 . .
e.g. [ := Z n!e/"+log2x+7+x 2logx+Z e ™ xP isalog-exp transseries.
n=1 p=0

The number of iterations of exp and log must be uniformly bounded.

Structure
Tig enjoys acomposition law o: Ty g x ng —— T which acts termwise on the right:

felogx = Z n!x+logs x +7 + (log x) 2log, x + Z e~ (log0)"! (log x)P.
n=1 p=0
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Cuts in T [van der Hoeven - 2006]

« Acut (in Trg) is an <-initial subset c< T without supremum in (Tyg, <)

« Monotonous operations c¢1+ ¢, ¢1 % €3,€! on cuts ¢y, c;. Also d(cy) for certain cuts.
Problem: cut operations behave quite differently as standard operations.

“Good” way to define operations on cuts? Yes: surreal numbers.

o Classification of cuts in Ty < T g using the cut operations and transseries f € T.



[1.5 - Cuts, functional equations, and solutions

A) “Horizontal” cuts related to missing pseudo-limits:

L

A

{f:3In€N, f<logx+log2x+---+lognx}

{f An€N f<—+ + ot
= {f:VnE]N,f<

1
xlogx

1

xlog x--logy,

1

xlogx--log,

F

3

11/28
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A) “Horizontal” cuts related to missing pseudo-limits:

L := {f:3n€NN, f<logx+log2x+---+lognx}
A = {f In€IN f<—+ ! + ot ! }

xlogx xlogx--log, x

_ oL _ | B 1
' :=¢e ™~ = {f.VnE]N,f xlogx---lognx}'

Horizontal cuts / difference equations / Hahn series

The difference equation
f-felogx =logx (&)

has no solution in T1g. Any solution fin T2Tyg fills L.
Solution: f=logx+logyx+- in R[[9M]]2Trg. We have 9(L) =A; we expect that

1 1 1
d(log x +logyx+-) = — N T foor o




B) “Vertical” cuts

Q = T = {f:EInG]N,f<e"'ex (n times)}
oo = {f:Ar€R, f<r} = {f:VvneN, f <log, x}.
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B) “Vertical” cuts

Q = T = {f:EInE]N,f<e"'ex (n times)}
oo = {f:Ar€R, f<r} = {f:VvneN, f <log, x}.

Vertical cuts / conjugation equations / hyperseries

The formal version of Abel's equations

fo(x+1) = e -f (€5) and fologx = f-1 (&7)

have no solution in Tyg. Any solution of (E3) (resp. (€5)) fills Q (resp. ).
Solutions: “hyperexponential” f,) = e, and “hyperlogarithm” f,, = {,,.

Note that 9(c0) =T'. Indeed we expect that

1
xlogx--log,x -’

a@a)) =



C) “Oblique” cuts

_lognx
N := {f:EInG]N,f<x+e"1°gx+e }
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C) “Oblique” cuts

. Vlognx
N := {f:EInE]N,f<x+e"1°gx+e }

Oblique cuts / mixed equations / nested series

The equation

f=x+elloer  f o (&)

has no solution in Tig. Any solution f, of (£,) would fill N.

Solutions: “Syntactic” solutions

Jlogzx+e™
ﬁ) _ x+e\/logx+e .

[Schmeling - 2001]: It is consistent to consider fields of transseries containing f,.
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A field of hyperseries [Schmeling - 2001]

Schmeling defines a Hahn series field ., with functions E , L for all kK€EIN , where

E koL = L xoE x = idy_,, and
E ia(s+1) = E toE ra(s) forallk € N ands € HZX,
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A field of hyperseries [Schmeling - 2001]

Schmeling defines a Hahn series field ., with functions E , L for all kK€EIN , where

E koL = L xoE x = idy_,, and
E ia(s+1) = E toE ra(s) forallk € N ands € HZX,

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2019]

Field (L, ’,-) of logarithmic hyperseries, given as L=R[[£]] where
£ is the group of formal products | = H £, (L)y<p € R,
Y<p
(lexicographic order and pointwise product). Set £, :=t, ¢, for all y < "t and

, 1
., =
P Hy<pf}’

Loy = €1,
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A hyperserial field is a Hahn series field T =R[[9t]] endowed with a function

LxT®——T, called the composition law,

which satisfies (among other technical details), for all f €LL:
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Definition
A hyperserial field is a Hahn series field T =R[[9t]] endowed with a function

LxT®——T, called the composition law,

which satisfies (among other technical details), for all f €LL:

Compatibility ~ For all s€ T™X, the function h—— hos:I.—— T is a ring morphism
with (3 .c;fi) e $= 2. fic s whenever (fi)ier is summable.
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Definition
A hyperserial field is a Hahn series field T =R[[9t]] endowed with a function

LxT®——T, called the composition law,

which satisfies (among other technical details), for all f €LL:

Compatibility ~ For all s€ T™X, the function h—— hos:I.—— T is a ring morphism
with (3 .c;fi) e $= 2. fic s whenever (fi)ier is summable.

Associativity ~ fo(ges)=(f-g)es forall geIL’R and se TK,

Monotonicity — {pes<{yuot forall f€On and s, t € TR with s<t.
(k)
Taylor expansions ~ fo(s+0)=) 1N % 5kfor all se TR, and €T with §<s.

[van den Dries, van der Hoeven, Kaplan] (L,-) itself is a hyperserial field.
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Let T=R[[M]] be a hyperserial field, let f €L and s€ T>®. We note that

1. The series f s is determined by the class of series £, t for all y€On and te T,
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Let T=R[[M]] be a hyperserial field, let f €L and s€ T>®. We note that
1. The series f - s is determined by the class of series ¢, t for all y€On and te TX,

2. Each series ¢, t is determined by the class of series £, - a where a ranges in a
subclass M xc N



11.8 - Reducing to partial hyperlogarithms 14728

Let T=R[[99t]] be a hyperserial field, let f€LL and s€ T*®. We note that
1. The series f - s is determined by the class of series £, t for all u€ On and t€ T*K,

2. Each series ¢, -t is determined by the class of series £, - a where a ranges in a
subclass 901 x cIN.

3. For 1€0n, we have the following self-contained definition of (9 ,») con:

m; = MY
M w1 = {MmEM:YnEIN, £, p,om€eN v}, and

M = (| My if g > 0is alimit.
I<p
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Let T=R[[9]] be a hyperserial field, let f €L and s€ T*R. We note that
1. The series f - s is determined by the class of series £, t for all u€ On and t€ T*K,

2. Each series ¢, -t is determined by the class of series £, - a where a ranges in a
subclass 901 x cIN.

3. For 1€0n, we have the following self-contained definition of (9 ,») con:

My, = M,
M w1 = {MmEM:YnEIN, £, p,om€eN v}, and
Mo = [ My if p > 0is a limit.
I<p

Goal: Defining 1, as in 3, find conditions on partial functions
L\;:ima—ﬂf;al—%aoa, a = o',u € On

so that (L\;)a:wu’yeOn determine a composition law o: L x T"R —— T
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Let T=R[[M]] and let L,, @ € ©°™ be partial functions L,: 9, —> T. Consider a law
R x99 —— M; (r,m) —m’

of ordered R-vector space on 91, called the real powering operation on 1.
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of ordered R-vector space on 91, called the real powering operation on 1.

Our conditions on L, are inequalities, the identities for the logarithm, and the restricted
Abel equations:

Lot(Lyp(a)) = Lopi(a) -1 forally € Onanda € M w1



11.9 - Hyperserial skeletons 15/28

Let T=R[[91]] and let L,, @ € 0™ be partial functions Ly: M, —> T. Consider a law
R x99 —— M; (r,m) —m’

of ordered R-vector space on 91, called the real powering operation on 1.

Our conditions on L, are inequalities, the identities for the logarithm, and the restricted
Abel equations:

Lowi(Lop(a)) = Lori(a) -1 forally € Onanda € M-,

Theorem

Assume that for all 1€ On, each s€ TR is « sufficiently close » to an a;€ . Then there
is a unique function o:ILx TR —— T with ¢,uoa=L.»(a) for all 1€ On and a €M 4, and
such that (T,-) is a hyperserial field.
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A hyperserial field (T,-) is said hyperexponentially closed if for all 1€ On, the
following function is bijective:

LpTR —TRsisyp s



[1.10 - Hyperexponential closure 16/28

A hyperserial field (T,-) is said hyperexponentially closed if for all z€On, the
following function is bijective:

LpTR —TRsisyp s

There is a hyperexponentially closed extension 1: T — T such that for each hyper-

exponentially closed extension ¢: T — U, there is a unique embedding : U —— T
with o= - 1.

T — T
o L3y
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Conway's class No of surreal numbers. Underlying order: lexicographically ordered
complete binary tree {-1,1}9™ whose depths are arbitrary ordinals.
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Conway's class No of surreal numbers. Underlying order: lexicographically ordered
complete binary tree {-1,1}9™ whose depths are arbitrary ordinals.
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Conway's class No of surreal numbers. Underlying order: lexicographically ordered
complete binary tree {-1,1}9™ whose depths are arbitrary ordinals.

oo e QO pmd o

< b

a
g'; magnitude + depth
c

X

simplicity

Simplicity: a is simpler than b, written ac b, if there is a (descending) path from a
to b in the tree.



1.2 - Inauctive ae?initions 19/28

Fundamental property of (No,<,c)

For all sets of numbers L,R with L<R, there is a unique =-minimal number {L | R} with
L < {LIR} < R

Equivalently: [order saturation + any non-empty convex subclass has a =-minimum]
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Well-founded order
For a€eNo, we have two sets aj:={b€No:b<a,b=a} and ar:={b€ENo:b>a,b=a}.

So a={ay | ag}. The partial order (No,Z) is well-founded — inductive definitions.
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So a={ar | ar}. The partial order (No,<) is well-founded —— inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a+ b of numbers a, b:

Inductive hypothesis: ar+b, a+ by and a+ by, ap+b are defined.
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Fundamental property of (No,<,c)

For all sets of numbers L,R with L<R, there is a unique =-minimal number {L | R} with
L < {LIR} < R

Equivalently: [order saturation + any non-empty convex subclass has a =-minimum]

Well-founded order
For a€eNo, we have two sets aj:={b€No:b<a,b=a} and ar:={b€ENo:b>a,b=a}.

So a={ar | ar}. The partial order (No,<) is well-founded —— inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a+ b of numbers a, b:

By definition, ap+b,a+bg and a+bp, ap+b
<a <b >b >a
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Fundamental property of (No,<,c)

For all sets of numbers L,R with L<R, there is a unique =-minimal number {L | R} with
L < {LIR} < R

Equivalently: [order saturation + any non-empty convex subclass has a =-minimum]

Well-founded order
For a€eNo, we have two sets aj:={b€No:b<a,b=a} and ar:={b€ENo:b>a,b=a}.

So a={ar | ar}. The partial order (No,<) is well-founded —— inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a+ b of numbers a, b:

We want ap+b, a+ by and a+ by, ap+b.
<a+b <a+b >a+b >a+b
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Fundamental property of (No,<,c)
For all sets of numbers L,R with L<R, there is a unique =-minimal number {L | R} with

L < {LIR} < R

Equivalently: [order saturation + any non-empty convex subclass has a =-minimum]

Well-founded order
For a€eNo, we have two sets aj:={b€No:b<a,b=a} and ar:={b€ENo:b>a,b=a}.

So a={ar | ar}. The partial order (No,<) is well-founded —— inductive definitions.

Surreal arithmetic [Conway - 1976]
Inductive definition of the sum a+ b of numbers a,b. We thus set

a+b:={ar+b,a+by| a+ bg,ag+b}.
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Fundamental property of (No,<,c)

For all sets of numbers L,R with L<R, there is a unique =-minimal number {L | R} with

L < {LIR} < R

Equivalently: [order saturation + any non-empty convex subclass has a =-minimum]

Well-founded order
For a€eNo, we have two sets aj:={b€No:b<a,b=a} and ar:={b€ENo:b>a,b=a}.

So a={ar | ar}. The partial order (No,<) is well-founded —— inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a+ b of numbers a,b. We have

a+b = {ap+b,a+ by | a+bg,ag+ b}.

Similar equations exist for —a,ab, %}
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Monomials [Conway - 1976]

For each a€No”*, there is a simplest 0,€No”~ with vd,=va (natural valuation). We set
Mo := {0,:a€No*} c No % class of monomials

Mo is a subgroup of (No’°, x) with a natural isomorphism (vNo*,<) ~ (Mo, >).
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Monomials [Conway - 1976]

For each a€No”*, there is a simplest 0,€No”~ with vd,=va (natural valuation). We set
Mo := {0,:a€No*} c No % class of monomials

Mo is a subgroup of (No’°, x) with a natural isomorphism (vNo*,<) ~ (Mo, >).

(No, <) is saturated — (No, +, x, v) is spherically complete. If u is a pseudo-Cauchy
sequence in No, then its convex class of pseudo-limits has a =-minimum simplim w.

For f=Zy<pfymy€]R[[Mo]], define fENo by induction on p€On:

f: Z fymy+fsmg if p = f+11isasuccessor ordinal, and

y<p
N —_—
f := simplim ( Z fymy] if p is a limit ordinal.
y<o o<p

Then R[[Mo]] — No; f |—>f is an isomorphism of ordered valued fields.
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Exponential [Gonshor - 1986]

k
For a€eNo and n€IN, set [a],:= stn%. The function

Ei(a) := {E1<aL)[a_aL]]N,E1<aR) [a-ag]ow 1 [af—lizc]lfn)\uf [CII?EZL]L}

is an isomorphism (No,+,<) — (No™, x,<). Set E,=E;" and L,,:E{<_") foralln€IN.
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Exponential [Gonshor - 1986]

k
For a€eNo and n€IN, set [a],:= stn%. The function

Ei(a) := {E1<aL)[a_aL]]N’E1<aR) [a-ag]ow 1 [af-lizc]lfn)\uf [CII?EZL]L}

is an isomorphism (No, +,<) — (No”°, x,<). Set E,=E;" andLn:E°<_") orallneIN .
4 1

The exponential interacts with the structure of Hahn series field as follows:

Mo = E(R[[Mo™']])
Ve < 1,E(¢e) =

|
™
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Exponential [Gonshor - 1986]

k
For aeNo and n€IN, set [a],:= stn%. The function

Ei(a) := {El(aL)[a—aL]]N,El(aR) [a-aglon 1 Ei1(ar) Eq(ar) }

lar-alon+1 [ar—-alnN

is an isomorphism (No,+,<) — (No™, x,<). Set E,=E;" and Ln:E{<_") foralln€IN.

The exponential interacts with the structure of Hahn series field as follows:

Mo = E(R[[Mo™']])
Ve < 1,E(¢e) =

|
™

[Berarducci, S. Kuhlmann, Mantova and Matusinski - 2019]: How to use these

properties to define more general exponential and logarithmic functions on fields of
Hahn series.
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[Berarducci, Mantova - 2017]: There is a unique embedding Tz —— No which
commutes with transfinite sums and exponentials, and sends x to w.

numbers as generalized transseries — filling cuts ¢=(L,R) in T g with numbers {L | R}?
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[Berarducci, Mantova - 2017]: There is a unique embedding Tz —— No which
commutes with transfinite sums and exponentials, and sends x to w.

numbers as generalized transseries — filling cuts ¢= (L, R) in T g with numbers {L| R}?

Vertical cuts as numbers

We have E,(w)=w"" (n times) for all n€N . So the number

@

& = {w, 0% 0?,... 10}

is the simplest « transexponential » number. Candidate for e, in No?



I11.5 - Transseries and cuts as numbers 22128

[Berarducci, Mantova - 2017]: There is a unique embedding Tz —— No which
commutes with transfinite sums and exponentials, and sends x to w.

numbers as generalized transseries — filling cuts ¢= (L, R) in T g with numbers {L| R}?

Vertical cuts as numbers

We have E,(w)=w"" (n times) for all n€N . So the number

@

& = {w, 0% 0?,... 10}
is the simplest « transexponential » number. Candidate for e, in No?

Nested cuts as numbers
Candidate for f,: the corresponding number

Jlogze o, rlogzo floos
{w,a)+e"1°g”,co+e"1°g“+e .. | o it @ T ,o+e” log“,ra):r>1}.



[11.6 - Surreal substructures 23/28

A surreal substructure is a class ScNo such that (S,<,5) and (No,<,S) are isomor-
phic. There is a unique such isomorphism Zg:No —— S.

—— each a€S is determined by its « label » z in a==g(z).
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A surreal substructure is a class ScNo such that (S,<,5) and (No,<,S) are isomor-
phic. There is a unique such isomorphism Zg:No —— S.

—— each a€S is determined by its « label » z in a==g(z).

Numerous classes involved in the study of No are surreal substructures:
« The class No™® of positive infinite numbers.

The class No™ of infinitesimals.

The class Mo of monomials.

The class R[[Mo™!']]=L;(Mo) of so-called purely infinite numbers.

The class Mo,,=(,cp En(Mo) of « log-atomic » numbers.



[11.7 - Surreal hyperexponentiation (1) 24128

The first hyperlogarithm L,:No™® —— No”R can be defined using simple rules:

Defining L, on No [with van der Hoeven and Mantova]

1 1

« We must have L= soLy=-Y 1 T andsoon...
-

@ [olyLyLq’
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The first hyperlogarithm L,:No™® —— No”R can be defined using simple rules:

Defining L, on No [with van der Hoeven and Mantova]

1 1

« We must have L= soLy=-Y 1 T andsoon...
-

@ [olyLyLq’

. Let a€No™R. We assume that L,(a) is defined, and try to define L., (a+ ¢) for each
e<1. The family (Lgok)(a) "), is summable. So we set
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The first hyperlogarithm L,:No™® —— No”R can be defined using simple rules:

Defining L, on No [with van der Hoeven and Mantova]

1 ’ 1

« We must have L= ,50Ly==) 1cn T and so on...
e

W LoLyLyLs-

. Let a€No™R. We assume that L,(a) is defined, and try to define L., (a+ ¢) for each
e<1. The family (Lgok)(a) "), is summable. So we set

Ly(a+¢) :=
k=0

Define L, on a class S withvb€No™®, In€N, L,(b) =:a+c€S+No~!. Then

L(k)(a) ok
L,(b) = Lw(En(a+5))Abe=1eqn+Lw(a+5) = n+kZ‘ o
0



I11.8 - Surreal hyperexponentiation (2) 25128

The class Mo,, of log-atomic numbers satisfies the previous conditions. For a, b€ No™®
with a< b, we require

L,(a) < Ly(a) and
Lo(a) < Lo(b),

which calls for the following inductive definition of L,
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The class Mo,, of log-atomic numbers satisfies the previous conditions. For a, b€ No™®
with a< b, we require

L,(a) < Ly(a) and
Lo(a) < Lo(b),

which calls for the following inductive definition of L,

~~

Va € Moy, Ly(a) := {Lj)(a’)+

a7 | o)~ gy )

for generic a’, a” with a’,a"€Mo,, a,a"Ea,a' <a<a” and n€NN.
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The class Moy, of log-atomic numbers satisfies the previous conditions. For a, b€ No™}
with a< b, we require

L,(a) < Ly(a) and
L,(a) < L,(b),

which calls for the following inductive definition of L,

Va € Moy, IL(a) i {m»ﬁ | i:xwyﬁ,u(a)},

for generic a’, a” with a’,a"€Mo,, a,a"Ea,a' <a<a” and n€NN.

This generalizes to L, for each p€ On. We obtain a composition law

:ILx No™® —— No. (Lg No)



11.9 - nyperserlal expansions 26/28
Hyperserial expansions

For meMo™!, there are a, € On, u, |y €No, 1€{-1,1} such that m expands uniquely as

m = eV (LgEY)"  (=exp(¥) x (Lp(Ex(u)))").
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Hyperserial expansions

For meMo™!, there are a, € On, u, |y €No, 1€{-1,1} such that m expands uniquely as

m = eV (LgEY)"  (=exp(¥) x (Lp(Ex(u)))").

Constructing paths in numbers

Fix ap€ENo™. At each stage i, pick a term rym; in a; seen as a Hahn series, and expand it as
rm; = rie’ (Lg Eg)".
Then choose a;.1 €{1;, u;} with the restrictions
(Vi =0 = a; # ;) and (E; = 0o = a; # u;)

This defines a path (m;);.,, f<winao (¢<w if and only if m;=(Lg,(w))" for some i).
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Hyperserial expansions

For meMo™!, there are o, € On, u, | €No, 1€ {-1,1} such that m expands uniquely as

m = eV (LgEY)"  (=exp(y) x (Lp(Ex(u)))").

Constructing paths in numbers

Fix ap€ENo™. At each stage i, pick a term rym; in a; seen as a Hahn series, and expand it as
rm; = +e¥i (I E )"
Then choose a;.1 €{;, u;} with the restrictions
(Vi =0 = a; # ;) and (B, = 0o = a; #+ u;)
This defines a path (m;);-, in ao. It is well-nested if for large enough i, we have

Bi =0 , my, € suppy¥; , mj,; = minsuppu; ,and r; € {-1,1}.
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Describing numbers as hyperseries

A) existence of infinite paths — yes, e.g. there are numbers a,€ No which expand as

m+e,/L2(w E\/Lw(a) +eV Lo2(w) E 2

ap = w+E

Bstracture of infinile palhs

Cohmutiplicity of numbers with a civen oxpansion
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Describing numbers as hyperseries

Viexistence of infinite paths
B) structure of infinite paths — well-nested paths

Chmuliplicity of mumbers witl a civen expansion
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Describing numbers as hyperseries

Viexistence of infinite paths
D) strirclinnre Of /'/)_//'/)/'/« /w//)u

C) mutiplicity of numbers with a given expansion — by B), infinite expansions end up as

a;

. T i' E li+1 [l' . ,
a; = piteV (E(p,l ) ) , for large enough i, for some ¢;'s.

Theorem: For large enough i, numbers which expand as a; form a surreal substructure.
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Describing numbers as hyperseries

A) existence of infinite paths — yes
B) structure of infinite paths — well-nested paths

C) mutiplicity of numbers with a given expansion? — ultimately ~No

Theorem

Using this description of paths, one can represent any surreal number a as a tree labelled
by real and ordinal numbers



Thank you!



