Hyperseries and surreal Numbers*

09-03-2021
a PhD supervised by Joris van der Hoeven and Françoise Point
*. This document has been written using GNU $T_{E} X_{M A C S}$; see www. texmacs.org.

I- Functions

Germs at $+\infty$

$$
\text { asymptotic } \equiv \text { as the variable is large enough }
$$

We identify two functions f, g in

$$
\bigcap_{n \in \mathbb{N}} \bigcup_{r \in \mathbb{R}} C^{n}((r,+\infty), \mathbb{R})
$$

if $f(r)=g(r)$ for all sufficiently large $r \in \mathbb{R}($ written $r \gg 1)$.
$G:$ differential ring of equivalence classes, called germs at $+\infty$.

Germs at $+\infty$

$$
\text { asymptotic } \equiv \text { as the variable is large enough }
$$

We identify two functions f, g in

$$
\bigcap_{n \in \mathbb{N}} \bigcup_{r \in \mathbb{R}} C^{n}((r,+\infty), \mathbb{R})
$$

if $f(r)=g(r)$ for all sufficiently large $r \in \mathbb{R}$ (written $r \gg 1$).
$G:$ differential ring of equivalence classes, called germs at $+\infty$.

Definition

Hardy fields are differential subfields of G containing \mathbb{R}. Ordered by

$$
f<g \Longleftrightarrow \forall r \gg 1, f(r)<g(r)
$$

E.g. $\mathbb{R}\left(\left(x^{r}\right)_{r \in \mathbb{R}}\right), \mathbb{R}(x, \arctan x), \mathbb{R}\left(x, \mathrm{e}^{x}\right)$, and $\mathbb{R}(\log x, \log \log x)$.

I. 2 - Further examples

O-minimality and Hardy fields

Let $\mathcal{R}=(\mathbb{R},+, \times,<, \ldots)$ be an o-minimal extension of the real ordered field. Write $H(\mathcal{R})$ for the set of germs at $+\infty$ of functions $(a,+\infty) \longrightarrow \mathbb{R}, a \in \mathbb{R}$ that are definable in \mathcal{R}. Then $H(\mathcal{R})$ is a Hardy field.

In particular $H\left(\mathbb{R}_{\exp }\right)$ is a Hardy field.

I. 2 - Further examples

O-minimality and Hardy fields

Let $\mathcal{R}=(\mathbb{R},+, \times,<, \ldots)$ be an o-minimal extension of the real ordered field. Write $H(\mathcal{R})$ for the set of germs at $+\infty$ of functions $(a,+\infty) \longrightarrow \mathbb{R}, a \in \mathbb{R}$ that are definable in \mathcal{R}. Then $H(\mathcal{R})$ is a Hardy field.

In particular $H\left(\mathbb{R}_{\exp }\right)$ is a Hardy field.

Maximal Hardy fields

A Hardy field H is said maximal if it has no proper superset which is a Hardy field.
Conjecture 1 (ADH): The structure $(\not,+, \times,<,<, \partial)$ is elementarily equivalent to the field of log-exp transseries.

Conjecture 2 (ADH): For all countable subsets $L, R \subseteq H$ with $L<R$, there is an $f \in H$ with $L<f<R$.

I. 3 - Hyperexponentials

Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function $E_{\omega}: \mathbb{R} \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\forall r \gg 1, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right) .
$$

We have $E_{\omega}(r)>\mathrm{e}^{\mathrm{e}^{e^{*}}}$ for $r \gg 1: E_{\omega}$ is a hyperexponential function.

I. 3 - Hyperexponentials

Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function $E_{\omega}: \mathbb{R} \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\forall r \gg 1, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right)
$$

We have $E_{\omega}(r)>\mathrm{e}^{\mathrm{e}^{e^{e}}}$ for $r \gg 1: E_{\omega}$ is a hyperexponential function.

Theorem [Boschernitzan - 1986]

$\mathbb{R}\left(E_{\omega}, E_{\omega}^{\prime}, E_{\omega}^{\prime \prime}, \ldots\right)$ is a Hardy field.

I. 3 - Hyperexponentials

Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function $E_{\omega}: \mathbb{R} \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\forall r \gg 1, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right)
$$

We have $E_{\omega}(r)>\mathrm{e}^{\mathrm{e}^{e^{e}}}$ for $r \gg 1: E_{\omega}$ is a hyperexponential function.

Theorem [Boschernitzan - 1986]

$\mathbb{R}\left(E_{\omega}, E_{\omega}^{\prime}, E_{\omega}^{\prime \prime}, \ldots\right)$ is a Hardy field.

Theorem [Padgett - 2022]

There is a Hardy field $H_{\text {containing }} H_{\mathrm{an}, \mathrm{exp}}$, the germ of E_{ω}, its inverse L_{ω}, and which is closed under composition of germs.

II - Series

II. 1 - Hahn series

Definition: Hahn series [Hahn - 1907]

Let $(\mathfrak{M}, \times,<)$ be a linearly ordered abelian group. The Hahn series field $\mathbb{R}[[\mathfrak{M}]]$ is the class of functions $f: \mathfrak{M} \longrightarrow \mathbb{R}$ whose support

$$
\operatorname{supp} f:=\{\mathfrak{m} \in \mathfrak{M}: f(\mathfrak{m}) \neq 0\} \subseteq \mathfrak{M}
$$

is a well-ordered subset of $(\mathfrak{M},>) . \mathbb{R}[[\mathfrak{M}]]$ is an ordered valued field.

II. 1 - Hahn series

Definition: Hahn series [Hahn - 1907]

Let $(\mathfrak{M}, \times,<)$ be a linearly ordered abelian group. The Hahn series field $\mathbb{R}[[\mathfrak{M}]]$ is the class of functions $f: \mathfrak{M} \longrightarrow \mathbb{R}$ whose support

$$
\operatorname{supp} f:=\{\mathfrak{m} \in \mathfrak{M}: f(\mathfrak{m}) \neq 0\} \subseteq \mathfrak{M}
$$

is a well-ordered subset of $(\mathfrak{M},>) . \mathbb{R}[[\mathfrak{M}]]$ is an ordered valued field:
Pointwise sum / Cauchy product:
$(f+g)=\mathfrak{m} \longmapsto f(\mathfrak{m})+g(\mathfrak{m}) \quad / \quad(f g)=\mathfrak{m} \longmapsto \sum_{\mathfrak{u v}=\mathfrak{m}} f(\mathfrak{u}) g(\mathfrak{v})$
Order / valuation:
$0<f \Longleftrightarrow 0<f(\max \sup f) \quad / \quad f<g \Longleftrightarrow \max \operatorname{supp} f<\max \operatorname{supp} g$
Identification:
Each $f \in \mathbb{R}[[\mathfrak{M}]]$ is seen as the formal series $f \equiv \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$.

II. 2 - Summable families

Fix a Hahn series field $S=\mathbb{R}[[\mathfrak{M}]]$. Idea: infinite pointwise sums in S.

Definition

Let I be a set, and let $\left(f_{i}\right)_{i \in I} \in \mathbb{S}^{I}$ be a family. We say that $\left(f_{i}\right)_{i \in I}$ is summable if
i. The set $\bigcup_{i \in I}$ supp f_{i} is well-ordered in ($\mathfrak{M},>$).
ii. For all $\mathfrak{m} \in \mathfrak{M}$, the set $I_{\mathfrak{m}}:=\left\{i \in I: \mathfrak{m} \in \operatorname{supp} f_{i}\right\}$ is finite.

Then the following is a well-defined element of S :

$$
\sum_{i \in I} f_{i}:=\sum_{\mathfrak{m} \in \mathfrak{M}}\left(\sum_{i \in I_{\mathfrak{m}}} f_{i}(\mathfrak{m})\right) \mathfrak{m} .
$$

II. 2 - Summable families

Fix a Hahn series field $S=\mathbb{R}[[\mathfrak{M}]]$. Idea: infinite pointwise sums in S.

Definition

Let I be a set, and let $\left(f_{i}\right)_{i \in I} \in \mathbb{S}^{I}$ be a family. We say that $\left(f_{i}\right)_{i \in I}$ is summable if
i. The set $\bigcup_{i \in I}$ supp f_{i} is well-ordered in ($\mathfrak{M},>$).
ii. For all $\mathfrak{m} \in \mathfrak{M}$, the set $I_{\mathfrak{m}}:=\left\{i \in I: \mathfrak{m} \in \operatorname{supp} f_{i}\right\}$ is finite.

Then the following is a well-defined element of $\$$:

$$
\sum_{i \in I} f_{i}:=\sum_{\mathfrak{m} \in \mathfrak{M}}\left(\sum_{i \in I_{\mathrm{m}}} f_{i}(\mathfrak{m})\right) \mathfrak{m} .
$$

[B. Neumann - 1949] For $\left(a_{n}\right)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ and $\varepsilon<1$, the family $\left(a_{n} \varepsilon^{n}\right)_{n \in \mathbb{N}}$ is summable.

$$
\text { e.g. } \frac{1}{1+\varepsilon}=\sum_{n \in \mathbb{N}}(-1)^{n} \varepsilon^{n} .
$$

Log-exp transseries [Dahn, Göring - 1987 and Ecalle - 1992]

Field $\mathbb{T}_{\text {LE }}$ of log-exp transseries: Hahn series involving formal terms $x, \log x$ and e^{x} and combinations thereof.

$$
\text { e.g. } f:=\sum_{n=1}^{+\infty} n!\mathrm{e}^{x / n}+\log _{2} x+7+x^{-2} \log x+\sum_{p=0}^{+\infty} \mathrm{e}^{-x^{p+1}} x^{p} \quad \text { is a log-exp transseries. }
$$

The number of iterations of \exp and \log must be uniformly bounded.

Log-exp transseries [Dahn, Göring - 1987 and Ecalle - 1992]

Field $\mathrm{T}_{\text {LE }}$ of log-exp transseries: Hahn series involving formal terms $x, \log x$ and e^{x} and combinations thereof.

$$
\text { e.g. } f:=\sum_{n=1}^{+\infty} n!\mathrm{e}^{x / n}+\log _{2} x+7+x^{-2} \log x+\sum_{p=0}^{+\infty} \mathrm{e}^{-x^{p+1}} x^{p} \quad \text { is a log-exp transseries. }
$$

The number of iterations of exp and log must be uniformly bounded.

Structure

T_{LE} enjoys a derivation $\partial: \mathbb{T}_{\mathrm{LE}} \longrightarrow \mathbb{T}_{\mathrm{LE}}$ which acts termwise, e.g.

Log-exp transseries [Dahn, Göring - 1987 and Ecalle - 1992]

Field $\mathrm{T}_{\text {LE }}$ of log-exp transseries: Hahn series involving formal terms $x, \log x$ and e^{x} and combinations thereof.

$$
\text { e.g. } f:=\sum_{n=1}^{+\infty} n!\mathrm{e}^{x / n}+\log _{2} x+7+x^{-2} \log x+\sum_{p=0}^{+\infty} \mathrm{e}^{-x^{p+1}} x^{p} \quad \text { is a log-exp transseries. }
$$

The number of iterations of exp and log must be uniformly bounded.

Structure

\mathbb{T}_{LE} enjoys a derivation $\partial: \mathrm{T}_{\mathrm{LE}} \longrightarrow \mathbb{T}_{\mathrm{LE}}$ which acts termwise, e.g.

$$
\partial f=\sum_{n=1}^{+\infty}(n-1)!\mathrm{e}^{x / n}+\frac{1}{x \log x}-2 x^{-3} \log x+x^{-3}+\sum_{p=0}^{+\infty}\left(p x^{p-1}-(p+1) x^{p}\right) \mathrm{e}^{-x^{p+1}}
$$

Log-exp transseries [Dahn, Göring - 1987 and Ecalle - 1992]

Field $\mathrm{T}_{\text {LE }}$ of log-exp transseries: Hahn series involving formal terms $x, \log x$ and e^{x} and combinations thereof.

$$
\text { e.g. } f:=\sum_{n=1}^{+\infty} n!\mathrm{e}^{x / n}+\log _{2} x+7+x^{-2} \log x+\sum_{p=0}^{+\infty} \mathrm{e}^{-x^{p+1}} x^{p} \quad \text { is a log-exp transseries. }
$$

The number of iterations of exp and log must be uniformly bounded.

Structure

\mathbb{T}_{LE} enjoys a composition law $:: \mathbb{T}_{\mathrm{LE}} \times \mathbb{T}_{\mathrm{LE}}^{>\mathrm{R}} \longrightarrow \mathbb{T}_{\mathrm{LE}}$ which acts termwise on the right:

Log-exp transseries [Dahn, Göring - 1987 and Ecalle - 1992]

Field $\mathrm{T}_{\text {LE }}$ of log-exp transseries: Hahn series involving formal terms $x, \log x$ and e^{x} and combinations thereof.

$$
\text { e.g. } f:=\sum_{n=1}^{+\infty} n!\mathrm{e}^{x / n}+\log _{2} x+7+x^{-2} \log x+\sum_{p=0}^{+\infty} \mathrm{e}^{-x^{p+1}} x^{p} \quad \text { is a log-exp transseries. }
$$

The number of iterations of exp and log must be uniformly bounded.

Structure

\mathbb{T}_{LE} enjoys a composition law $:: \mathbb{T}_{\mathrm{LE}} \times \mathbb{T}_{\mathrm{LE}}^{>\mathrm{R}} \longrightarrow \mathbb{T}_{\mathrm{LE}}$ which acts termwise on the right:

$$
f \circ \log x=\sum_{n=1}^{+\infty} n!x^{1 / n}+\log _{3} x+7+(\log x)^{-2} \log _{2} x+\sum_{p=0}^{+\infty} \mathrm{e}^{-(\log x)^{p+1}}(\log x)^{p}
$$

Cuts in $\mathrm{T}_{\text {LE }}$ [van der Hoeven - 2006]

- Acut (in $\left.\mathbb{T}_{\mathrm{LE}}\right)$ is an \leqslant-initial subset $c \subseteq \mathbb{T}_{\mathrm{LE}}$ without supremum in $\left(\mathrm{T}_{\mathrm{LE}}, \leqslant\right)$
- Monotonous operations $\boldsymbol{c}_{1}+\boldsymbol{c}_{2}, \boldsymbol{c}_{1} \times \boldsymbol{c}_{2}, \mathrm{e}^{\boldsymbol{c}_{1}}$ on cuts $\boldsymbol{c}_{1}, \boldsymbol{c}_{2}$. Also $\partial\left(\boldsymbol{c}_{1}\right)$ for certain cuts. Problem: cut operations behave quite differently as standard operations.
"Good" way to define operations on cuts? Yes: surreal numbers.
- Classification of cuts in $\mathbb{T}_{g} \subsetneq \mathbb{T}_{\mathrm{LE}}$ using the cut operations and transseries $f \in \mathbb{T}_{g}$.
A) "Horizontal" cuts related to missing pseudo-limits:

$$
\begin{aligned}
\mathbf{L} & :=\left\{f: \exists n \in \mathbb{N}, f<\log x+\log _{2} x+\cdots+\log _{n} x\right\} \\
\mathbf{\Lambda} & :=\left\{f: \exists n \in \mathbb{N}, f<\frac{1}{x}+\frac{1}{x \log x}+\cdots+\frac{1}{x \log x \cdots \log _{n} x}\right\} \\
\boldsymbol{\Gamma}:=\mathrm{e}^{-\mathbf{L}} & =\left\{f: \forall n \in \mathbb{N}, f<\frac{1}{x \log x \cdots \log _{n} x}\right\} .
\end{aligned}
$$

A) "Horizontal" cuts related to missing pseudo-limits:

$$
\begin{aligned}
\mathbf{L} & :=\left\{f: \exists n \in \mathbb{N}, f<\log x+\log _{2} x+\cdots+\log _{n} x\right\} \\
\mathbf{\Lambda} & :=\left\{f: \exists n \in \mathbb{N}, f<\frac{1}{x}+\frac{1}{x \log x}+\cdots+\frac{1}{x \log x \cdots \log _{n} x}\right\} \\
\Gamma:=\mathrm{e}^{-\mathbf{L}} & =\left\{f: \forall n \in \mathbb{N}, f<\frac{1}{x \log x \cdots \log _{n} x}\right\} .
\end{aligned}
$$

Horizontal cuts / difference equations / Hahn series

The difference equation

$$
\begin{equation*}
f-f \circ \log x=\log x \tag{h}
\end{equation*}
$$

has no solution in \mathbb{T}_{LE}. Any solution f in $\mathbb{T} \supsetneq \mathbb{T}_{\mathrm{LE}}$ fills \mathbf{L}.
Solution: $f=\log x+\log _{2} x+\cdots$ in $\mathbb{R}[[\mathfrak{M}]] \supseteq \mathbb{T}_{\text {LE }}$. We have $\partial(\mathbf{L})=\Lambda$; we expect that

$$
\partial\left(\log x+\log _{2} x+\cdots\right)=\frac{1}{x}+\frac{1}{x \log x}+\cdots+\frac{1}{x \log x \cdots \log _{n} x}+\cdots
$$

B) "Vertical" cuts

$$
\begin{aligned}
\Omega:=\mathbb{T}_{\mathrm{LE}} & =\left\{f: \exists n \in \mathbb{N}, f<\mathrm{e}^{\cdot \cdot \mathrm{e}^{x}}(n \text { times })\right\} \\
\infty & =\{f: \exists r \in \mathbb{R}, f<r\}=\left\{f: \forall n \in \mathbb{N}, f<\log _{n} x\right\} .
\end{aligned}
$$

B) "Vertical" cuts

$$
\begin{aligned}
\Omega:=\mathbb{T}_{\mathrm{LE}} & =\left\{f: \exists n \in \mathbb{N}, f<\mathrm{e}^{\cdot \cdot \mathrm{e}^{x}}(n \text { times })\right\} \\
\infty & =\{f: \exists r \in \mathbb{R}, f<r\}=\left\{f: \forall n \in \mathbb{N}, f<\log _{n} x\right\}
\end{aligned}
$$

Vertical cuts / conjugation equations / hyperseries

The formal version of Abel's equations

$$
\begin{equation*}
f \circ(x+1)=\mathrm{e}^{x} \circ f \quad\left(\varepsilon_{v}^{+}\right) \quad \text { and } \quad f \circ \log x=f-1 \tag{v}
\end{equation*}
$$

have no solution in \mathbb{T}_{LE}. Any solution of $\left(\varepsilon_{v}^{+}\right)$(resp. $\left(\varepsilon_{v}^{-}\right)$) fills Ω (resp. ∞).
Solutions: "hyperexponential" $f_{v}^{+}=\mathrm{e}_{\omega}$ and "hyperlogarithm" $f_{v}^{-}=\ell_{\omega}$.
Note that $\partial(\infty)=\Gamma$. Indeed we expect that

$$
\partial\left(\ell_{\omega}\right)=\frac{1}{x \log x \cdots \log _{n} x \cdots}
$$

C) "Oblique" cuts

$$
\mathbf{N}:=\left\{f: \exists n \in \mathbb{N}, f<x+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\cdot \sqrt{\log n x}}}\right\} .
$$

C) "Oblique" cuts

$$
\mathbf{N}:=\left\{f: \exists n \in \mathbb{N}, f<x+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\cdot \cdot \sqrt{\log n x}}}\right\} .
$$

Oblique cuts / mixed equations / nested series

The equation

$$
f=x+\mathrm{e}^{f \cdot \log x} \quad f \sim x \quad\left(\varepsilon_{0}\right)
$$

has no solution in \mathbb{T}_{LE}. Any solution f_{o} of $\left(\varepsilon_{o}\right)$ would fill \mathbf{N}.
Solutions: "Syntactic" solutions

$$
f_{0}=x+\mathrm{e}^{\sqrt{\log x}+\mathrm{e}^{\sqrt{\log _{2} x}+\mathrm{e}^{\prime}}}
$$

[Schmeling-2001]: It is consistent to consider fields of transseries containing f_{0}.

II. 6 - Hyperseries

A field of hyperseries [Schmeling - 2001]
Schmeling defines a Hahn series field $\mathbb{H}_{<\omega}$ with functions $E_{\omega^{k}}, L_{\omega^{k}}$ for all $k \in \mathbb{N}$, where

$$
\begin{aligned}
E_{\omega^{k}} \circ L_{\omega^{k}}=L_{\omega^{k}} \circ E_{\omega^{k}} & =\operatorname{id}_{\mathbb{H}_{\omega}}, \text { and } \\
E_{\omega^{k+1}}(s+1) & =E_{\omega^{k}} E_{\omega^{k+1}}(s) \text { for all } k \in \mathbb{N} \text { and } s \in \mathbb{H}_{<\omega}^{\gtrless R} .
\end{aligned}
$$

II. 6 - Hyperseries

A field of hyperseries [Schmeling - 2001]

Schmeling defines a Hahn series field $\mathbb{H}_{<\omega}$ with functions $E_{\omega^{k}}, L_{\omega^{k}}$ for all $k \in \mathbb{N}$, where

$$
\begin{aligned}
E_{\omega^{k}} \circ L_{\omega^{k}}=L_{\omega^{k}} \circ E_{\omega^{k}} & =\operatorname{id}_{\mathbb{H}_{\omega^{\prime}}} \text {, and } \\
E_{\omega^{k+1}}(s+1) & =E_{\omega^{k}} E_{\omega^{k+1}}(s) \text { for all } k \in \mathbb{N} \text { and } s \in \mathbb{H}_{<\omega}^{\geqslant \mathbb{R}} .
\end{aligned}
$$

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2019]
Field (L, ', \circ) of logarithmic hyperseries, given as $\mathbb{L}=\mathbb{R}[[\mathfrak{L}]]$ where

$$
\mathfrak{L} \text { is the group of formal products } \mathfrak{l}=\prod_{\gamma<\rho} \ell_{\gamma}^{l_{\gamma}},\left(\mathfrak{l}_{\gamma}\right)_{\gamma<\rho} \in \mathbb{R}^{\rho} \text {, }
$$

(lexicographic order and pointwise product). Set $\ell_{\omega^{\mu}+\gamma}:=\ell_{\gamma} \circ \ell_{\omega^{\mu}}$ for all $\gamma<\omega^{\mu+1}$ and

$$
\begin{aligned}
\ell_{\rho}^{\prime} & =\frac{1}{\prod_{\gamma<\rho^{\prime}} \ell_{\gamma}} \\
\ell_{\omega^{\mu+1}+1} \ell_{\varrho^{\mu}} & =\ell_{\sigma^{\mu+1}}-1 .
\end{aligned}
$$

Definition

A hyperserial field is a Hahn series field $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ endowed with a function

$$
\circ: \mathbb{L} \times \mathbb{T}^{>R} \longrightarrow \mathbb{T}, \quad \text { called the composition law, }
$$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Definition

A hyperserial field is a Hahn series field $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ endowed with a function

$$
\circ: \mathbb{L} \times \mathbb{T}^{>R} \longrightarrow \mathbb{T}, \quad \text { called the composition law, }
$$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:
Compatibility \quad For all $s \in \mathbb{T}^{>R}$, the function $h \longmapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $\left(\sum_{i \in I} f_{i}\right) \circ s=\sum_{i \in I} f_{i} \circ s$ whenever $\left(f_{i}\right)_{i \in I}$ is summable.

Definition

A hyperserial field is a Hahn series field $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ endowed with a function

$$
\circ: \mathbb{L} \times \mathbb{T}^{>R} \longrightarrow \mathbb{T}, \quad \text { called the composition law, }
$$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:
Compatibility For all $s \in \mathbb{T}^{\gtrdot \mathrm{R}}$, the function $h \longmapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $\left(\sum_{i \in I} f_{i}\right) \circ s=\sum_{i \in I} f_{i} \circ s$ whenever $\left(f_{i}\right)_{i \in I}$ is summable.
Associativity $\quad f \circ(g \circ s)=(f \circ g) \circ s$ for all $g \in \mathbb{L}^{\supset \mathrm{R}}$ and $s \in \mathbb{T}^{\triangleright \mathrm{R}}$.

Definition

A hyperserial field is a Hahn series field $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ endowed with a function

$$
\circ: \mathbb{L} \times \mathbb{T}^{>R} \longrightarrow \mathbb{T}, \quad \text { called the composition law, }
$$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:
Compatibility \quad For all $s \in \mathbb{T}^{>R}$, the function $h \longmapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $\left(\sum_{i \in I} f_{i}\right) \circ s=\sum_{i \in I} f_{i} \circ s$ whenever $\left(f_{i}\right)_{i \in I}$ is summable.

Associativity $\quad f \circ(g \circ s)=(f \circ g) \circ s$ for all $g \in \mathbb{L}^{>R}$ and $s \in \mathbb{T}^{>R}$.
Monotonicity $\quad \ell_{\omega^{\mu}} \circ s<\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $s, t \in \mathbb{T}^{>R}$ with $s<t$.

Definition

A hyperserial field is a Hahn series field $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ endowed with a function

$$
\circ: \mathbb{L} \times \mathbb{T}^{>R} \longrightarrow \mathbb{T}, \quad \text { called the composition law, }
$$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:
Compatibility \quad For all $s \in \mathbb{T}^{>R}$, the function $h \longmapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $\left(\sum_{i \in I} f_{i}\right) \circ s=\sum_{i \in I} f_{i} \circ s$ whenever $\left(f_{i}\right)_{i \in I}$ is summable.
Associativity $\quad f \circ(g \circ s)=(f \circ g) \circ s$ for all $g \in \mathbb{L}^{>R}$ and $s \in \mathbb{T}^{>R}$.
Monotonicity $\quad \ell_{\omega^{\mu}} \circ s<\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $s, t \in \mathbb{T}^{>R}$ with $s<t$.
Taylor expansions $\quad f \circ(s+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \stackrel{t}{k!}}{k} \delta^{k}$ for all $s \in \mathbb{T}^{>R}$, and $\delta \in \mathbb{T}$ with $\delta<s$.

Definition

A hyperserial field is a Hahn series field $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ endowed with a function

$$
\circ: \mathbb{L} \times \mathbb{T}^{>R} \longrightarrow \mathbb{T}, \quad \text { called the composition law, }
$$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:
Compatibility For all $s \in \mathbb{T}^{>R}$, the function $h \longmapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $\left(\sum_{i \in I} f_{i}\right) \circ s=\sum_{i \in I} f_{i} \circ s$ whenever $\left(f_{i}\right)_{i \in I}$ is summable.

Associativity $\quad f \circ(g \circ s)=(f \circ g) \circ s$ for all $g \in \mathbb{L}^{>R}$ and $s \in \mathbb{T}^{>R}$.
Monotonicity $\quad \ell_{\omega^{\mu}} \circ s<\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $s, t \in \mathbb{T}^{>R}$ with $s<t$.
Taylor expansions $\quad f \circ(s+\delta)=\sum_{k \in \mathbb{N}} \frac{f^{(k)} \stackrel{t}{k!}}{k} \delta^{k}$ for all $s \in \mathbb{T}^{>R}$, and $\delta \in \mathbb{T}$ with $\delta<s$.
[van den Dries, van der Hoeven, Kaplan] (L, ${ }^{\circ}$) itself is a hyperserial field.

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\gtrdot \mathrm{R}}$. We note that

1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $t \in \mathbb{T}^{\triangleright R}$.

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\gtrdot \mathrm{R}}$. We note that

1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $t \in \mathbb{T}^{\triangleright \mathrm{R}}$.
2. Each series $\ell_{\omega^{\mu}} \circ t$ is determined by the class of series $\ell_{\omega^{\mu}} \circ \mathfrak{a}$ where \mathfrak{a} ranges in a subclass $\mathfrak{M}_{\omega^{\mu} \subset \mathfrak{M}}$

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\gtrdot \mathrm{R}}$. We note that

1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $t \in \mathbb{T}^{\triangleright \mathrm{R}}$.
2. Each series $\ell_{\omega^{\mu} \circ} \circ$ is determined by the class of series $\ell_{\omega^{\mu}} \circ \mathfrak{a}$ where \mathfrak{a} ranges in a subclass $\mathfrak{M}_{\omega^{\mu}} \subset \mathfrak{M}$.
3. For $\mu \in \mathbf{O n}$, we have the following self-contained definition of $\left(\mathfrak{M}_{\omega^{\mu}}\right)_{\mu \in \mathbf{O} \mathbf{n}}$:

$$
\begin{aligned}
\mathfrak{M}_{1} & =\mathfrak{M}^{>1}, \\
\mathfrak{M}_{\omega^{\mu+1}} & =\left\{\mathfrak{m} \in \mathfrak{M}: \forall n \in \mathbb{N}, \ell_{\omega^{\mu}} n^{\circ} \mathfrak{m} \in \mathfrak{M}_{\omega^{\mu}}\right\}, \quad \text { and } \\
\mathfrak{M}_{\omega^{\mu}} & =\bigcap_{\kappa \mu} \mathfrak{M}_{\omega^{\mu}} \text { if } \mu>0 \text { is a limit. }
\end{aligned}
$$

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\gtrdot \mathrm{R}}$. We note that

1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{O n}$ and $t \in \mathbb{T}^{\triangleright \mathrm{R}}$.
2. Each series $\ell_{\omega^{\mu}} \circ t$ is determined by the class of series $\ell_{\omega^{\mu}} \circ \mathfrak{a}$ where \mathfrak{a} ranges in a subclass $\mathfrak{M}_{\omega^{\mu} \subset \mathfrak{M}}$.
3. For $\mu \in \mathbf{O n}$, we have the following self-contained definition of $\left(\mathfrak{M}_{\omega^{\mu}}\right)_{\mu \in \mathbf{O} \mathbf{n}}$:

$$
\begin{aligned}
\mathfrak{M}_{1} & =\mathfrak{M}^{>1}, \\
\mathfrak{M}_{\omega^{\mu+1}} & =\left\{\mathfrak{m} \in \mathfrak{M}: \forall n \in \mathbb{N}, \ell_{\omega^{\mu}} n^{\circ} \mathfrak{m} \in \mathfrak{M}_{\omega^{\mu}}\right\}, \quad \text { and } \\
\mathfrak{M}_{\omega^{\mu}} & =\bigcap_{\kappa \mu} \mathfrak{M}_{\omega^{\mu}} \text { if } \mu>0 \text { is a limit. }
\end{aligned}
$$

Goal: Defining \mathfrak{M}_{α} as in 3, find conditions on partial functions

$$
\widetilde{L_{\alpha}}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T} ; \mathfrak{a} \mapsto \ell_{\alpha} \circ \mathfrak{a}, \quad \alpha=\omega^{\mu}, \mu \in \mathbf{O n}
$$

so that $\left(\check{L_{\alpha}}\right)_{\alpha=\omega^{\mu}, \mu \in \mathbf{O}}$ determine a composition law $\circ: \mathbb{L} \times \mathbb{T}^{\triangleright \mathrm{R}}$ \qquad

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ and let $\widetilde{L_{\alpha}}, \alpha \in \omega^{\mathbf{O n}}$ be partial functions $\widetilde{L_{\alpha}}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T}$. Consider a law

$$
\mathbb{R} \times \mathfrak{M} \longrightarrow \mathfrak{M} ;(r, \mathfrak{m}) \mapsto \mathfrak{m}^{r}
$$

of ordered \mathbb{R}-vector space on \mathfrak{M}, called the real powering operation on \mathfrak{M}.

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ and let $\widetilde{L_{\alpha}}, \alpha \in \omega^{\mathbf{O n}}$ be partial functions $\widetilde{L_{\alpha}}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T}$. Consider a law

$$
\mathbb{R} \times \mathfrak{M} \longrightarrow \mathfrak{M} ;(r, \mathfrak{m}) \mapsto \mathfrak{m}^{r}
$$

of ordered \mathbb{R}-vector space on \mathfrak{M}, called the real powering operation on \mathfrak{M}.
Our conditions on $\widetilde{L_{\alpha}}$ are inequalities, the identities for the logarithm, and the restricted Abel equations:

$$
\left.\widetilde{L_{\omega^{\mu+1}}(} \widetilde{L_{\omega^{\mu}}}(\mathfrak{a})\right)=\widetilde{L_{\omega^{\mu+1}}}(\mathfrak{a})-1 \quad \text { for all } \mu \in \mathbf{O} \text { and } \mathfrak{a} \in \mathfrak{M}_{\omega^{\mu+1}} .
$$

Let $\mathbb{T}=\mathbb{R}[[\mathfrak{M}]]$ and let $\widetilde{L_{\alpha}}, \alpha \in \omega^{\mathbf{O n}}$ be partial functions $\widetilde{L_{\alpha}}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T}$. Consider a law

$$
\mathbb{R} \times \mathfrak{M} \longrightarrow \mathfrak{M} ;(r, \mathfrak{m}) \mapsto \mathfrak{m}^{r}
$$

of ordered \mathbb{R}-vector space on \mathfrak{M}, called the real powering operation on \mathfrak{M}.
Our conditions on $\widetilde{L_{\alpha}}$ are inequalities, the identities for the logarithm, and the restricted Abel equations:

Theorem

Assume that for all $\mu \in \mathbf{O n}$, each $s \in \mathbb{T}^{>\mathrm{R}}$ is « sufficiently close» to an $\mathfrak{a}_{s} \in \mathfrak{M}_{\omega^{\mu}}$. Then there is a unique function $\circ: \mathbb{L} \times \mathbb{T}^{\gtrdot \mathrm{R}} \longrightarrow \mathbb{T}$ with $\ell_{\omega^{\mu}} \cdot \mathfrak{a}=\widetilde{L_{\omega^{\mu}}}(\mathfrak{a})$ for all $\mu \in \mathbf{O n}$ and $\mathfrak{a} \in \mathfrak{M}_{\omega^{\mu}}$, and such that $(\mathrm{T}, \circ$) is a hyperserial field.

II. 10 - Hyperexponential closure

A hyperserial field (\mathbb{T}, \circ) is said hyperexponentially closed if for all $\mu \in \mathbf{O n}$, the following function is bijective:

$$
L_{\omega^{\mu}}: \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}} ; s \mapsto \ell_{\omega^{\mu}} \circ s
$$

A hyperserial field (\mathbb{T}, \circ) is said hyperexponentially closed if for all $\mu \in \mathbf{O n}$, the following function is bijective:

$$
L_{\omega^{\mu}}: \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}} ; s \mapsto \ell_{\omega^{\mu}} \circ s
$$

Theorem

There is a hyperexponentially closed extension $t: \mathbb{T} \longrightarrow \tilde{\mathbb{T}}$ such that for each hyperexponentially closed extension $\varphi: \mathbb{T} \longrightarrow \mathbb{U}$, there is a unique embedding $\psi: \mathbb{U} \longrightarrow \tilde{\mathbb{T}}$ with $\varphi=\psi \circ \iota$.

$$
\begin{aligned}
& \mathbb{T} \xrightarrow{\iota} \tilde{\mathbb{T}} \\
& \varphi \downarrow \downarrow \exists!\psi \\
& \mathbb{U}
\end{aligned}
$$

III - Numbers

III. 1 - Surreal numbers

Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<\mathbf{O n}}$ whose depths are arbitrary ordinals.

Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<\mathbf{O n}}$ whose depths are arbitrary ordinals.

Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<\mathbf{O n}}$ whose depths are arbitrary ordinals.

Simplicity: a is simpler than b, written $a \sqsubseteq b$, if there is a (descending) path from a to b in the tree.

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has $a \sqsubset$-minimum]

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has $a \sqsubset$-minimum]

Well-founded order

For $a \in$ No, we have two sets $\quad a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\} \quad$ and $\quad a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has $a \sqsubset$-minimum]

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $\quad a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\} \quad$ and $\quad a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum $a+b$ of numbers a, b :
Inductive hypothesis: $\quad a_{L}+b, a+b_{L} \quad$ and $\quad a+b_{R}, a_{R}+b$ are defined.

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has $a \sqsubset$-minimum]

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $\quad a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\} \quad$ and $\quad a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum $a+b$ of numbers a, b :
By definition,

$$
\underset{<a}{a_{L}+b, a+\underset{L}{b_{L}}} \quad \text { and } \quad \begin{gathered}
a+b_{R}, a_{R}+b \\
>b \\
>a
\end{gathered}
$$

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has $a \sqsubset$-minimum]

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $\quad a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\} \quad$ and $\quad a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum $a+b$ of numbers a, b :
We want

$$
a_{L}+b, a+b_{L} \quad \text { and }
$$

$$
\begin{gathered}
a+b_{R}, a_{R}+b . \\
>a+b>a+b
\end{gathered}
$$

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has $a \sqsubset$-minimum]

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $\quad a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\} \quad$ and $\quad a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum $a+b$ of numbers a, b. We thus set

$$
a+b:=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}
$$

Fundamental property of (No, <, ᄃ)

For all sets of numbers L, R with $L<R$, there is a unique $\sqsubset-m i n i m a l ~ n u m b e r ~\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

Equivalently: [order saturation + any non-empty convex subclass has a ᄃ-minimum]

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $\quad a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\} \quad$ and $\quad a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum $a+b$ of numbers a, b. We have

$$
a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}
$$

Similar equations exist for $-a, a b, a / b$.

III. 3 - Valuation theory of No

Monomials [Conway - 1976]

For each $a \in \mathbf{N o}^{\times}$, there is a simplest $\mathfrak{d}_{a} \in \mathbf{N o}{ }^{>}$with $v \mathfrak{d}_{a}=v a$ (natural valuation). We set

$$
\text { Mo }:=\left\{\mathfrak{d}_{a}: a \in \mathbf{N o}^{\times}\right\} \subseteq \mathbf{N o}^{>0}: \text { class of monomials }
$$

Mo is a subgroup of $\left(\mathbf{N o}^{>0}, \times\right)$ with a natural isomorphism $\left(\nu \mathbf{N o}^{\times},<\right) \simeq($ Mo,> $)$.

Monomials [Conway - 1976]

For each $a \in \mathbf{N o}^{\times}$, there is a simplest $\mathfrak{d}_{a} \in \mathbf{N o}{ }^{>}$with $v \mathfrak{d}_{a}=v a$ (natural valuation). We set

$$
\text { Mo }:=\left\{\mathfrak{d}_{a}: a \in \mathbf{N o}^{\times}\right\} \subseteq \mathbf{N o}^{>0}: \text { class of monomials }
$$

Mo is a subgroup of $\left(\mathbf{N o}^{>0}, \times\right)$ with a natural isomorphism $\left(\nu \mathbf{N o}^{\times},<\right) \simeq(\mathbf{M o},>)$.
($\mathbf{N o},<$) is saturated $\rightarrow(\mathbf{N o},+, \times, v)$ is spherically complete. If u is a pseudo-Cauchy sequence in No, then its convex class of pseudo-limits has a \subseteq-minimum simplim u.

Monomials [Conway - 1976]

For each $a \in \mathbf{N o}{ }^{\times}$, there is a simplest $\mathfrak{d}_{a} \in \mathbf{N o}{ }^{>}$with $v \mathfrak{d}_{a}=v a$ (natural valuation). We set

$$
\text { Mo }:=\left\{\mathfrak{d}_{a}: a \in \mathbf{N o}^{\times}\right\} \subseteq \mathbf{N o}^{>0}: \text { class of monomials }
$$

Mo is a subgroup of $\left(\mathbf{N o}^{>0}, \times\right)$ with a natural isomorphism $\left(\nu \mathbf{N o}^{\times},<\right) \simeq(\mathbf{M o},>)$.
$(\mathbf{N o},<)$ is saturated $\rightarrow(\mathbf{N o},+, \times, v)$ is spherically complete. If u is a pseudo-Cauchy sequence in No, then its convex class of pseudo-limits has a $\sqsubseteq-m i n i m u m$ simplim u. For $f=\sum_{\gamma<\rho} f_{\gamma} \mathfrak{m}_{\gamma} \in \mathbb{R}[[\mathbf{M o}]]$, define $\hat{f} \in \mathbf{N o}$ by induction on $\rho \in \mathbf{O n}$:

$$
\begin{aligned}
& \hat{f}:=\widehat{\sum_{\gamma<\beta} f_{\gamma} \mathfrak{m}_{\gamma}}+f_{\beta} \mathfrak{m}_{\beta} \quad \text { if } \rho=\beta+1 \text { is a successor ordinal, and } \\
& \hat{f}:=\operatorname{simplim}\left(\widehat{\sum_{\gamma<\sigma} f_{\gamma} \mathfrak{m}_{\gamma}}\right)_{\sigma<\rho} \quad \text { if } \rho \text { is a limit ordinal. }
\end{aligned}
$$

Then $\mathbb{R}[[\mathbf{M o}]] \longrightarrow \mathbf{N o} ; f \mapsto \hat{f}$ is an isomorphism of ordered valued fields.

Exponential [Gonshor - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k} k!}{k!}$. The function

$$
\boldsymbol{E}_{\mathbf{1}}(a):=\left\{\boldsymbol{E}_{\mathbf{1}}\left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \boldsymbol{E}_{\mathbf{1}}\left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} \left\lvert\, \frac{\boldsymbol{E}_{\mathbf{1}}\left(a_{R}\right)}{\left[a_{R}-a\right]_{2 \mathbb{N}+1}}\right., \frac{\boldsymbol{E}_{\mathbf{1}}\left(a_{L}\right)}{\left[a_{L}-a\right]_{\mathrm{N}}}\right\}
$$

is an isomorphism $(\mathbf{N o},+,<) \rightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$. Set $E_{n}=E_{1}^{\circ n}$ and $L_{n}=E_{1}^{0(-n)}$ for all $n \in \mathbb{N}$.

Exponential [Gonshor - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The function

$$
\boldsymbol{E}_{\mathbf{1}}(a):=\left\{\boldsymbol{E}_{\mathbf{1}}\left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \boldsymbol{E}_{\mathbf{1}}\left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} \left\lvert\, \frac{\boldsymbol{E}_{\mathbf{1}}\left(a_{R}\right)}{\left[a_{R}-a\right]_{2 \mathbb{N}+1}}\right., \frac{\boldsymbol{E}_{\mathbf{1}}\left(a_{L}\right)}{\left[a_{L}-a\right]_{\mathbb{N}}}\right\}
$$

is an isomorphism $(\mathbf{N o},+,<) \longrightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$. Set $E_{n}=E_{1}^{\circ n}$ and $L_{n}=E_{1}^{\circ(-n)}$ for all $n \in \mathbb{N}$.
The exponential interacts with the structure of Hahn series field as follows:

$$
\begin{aligned}
\mathbf{M o} & =E_{1}\left(\mathbb{R}\left[\left[\mathbf{M o}^{>1}\right]\right]\right) \\
\forall \varepsilon<1, E_{1}(\varepsilon) & =\sum_{k \in \mathbb{N}} \frac{1}{k!} \varepsilon^{k}
\end{aligned}
$$

Exponential [Gonshor - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The function

$$
\boldsymbol{E}_{\mathbf{1}}(a):=\left\{\boldsymbol{E}_{\mathbf{1}}\left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \boldsymbol{E}_{\mathbf{1}}\left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} \left\lvert\, \frac{\boldsymbol{E}_{\mathbf{1}}\left(a_{R}\right)}{\left[a_{R}-a\right]_{2 \mathbb{N}+1}}\right., \frac{\boldsymbol{E}_{\mathbf{1}}\left(a_{L}\right)}{\left[a_{L}-a\right]_{\mathbb{N}}}\right\}
$$

is an isomorphism $(\mathbf{N o},+,<) \longrightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$. Set $E_{n}=E_{1}^{\circ n}$ and $L_{n}=E_{1}^{\circ(-n)}$ for all $n \in \mathbb{N}$.
The exponential interacts with the structure of Hahn series field as follows:

$$
\begin{aligned}
\mathbf{M o} & =E_{1}\left(\mathbb{R}\left[\left[\mathbf{M o}^{>1}\right]\right]\right) \\
\forall \varepsilon<1, E_{1}(\varepsilon) & =\sum_{k \in \mathbb{N}} \frac{1}{k!} \varepsilon^{k}
\end{aligned}
$$

[Berarducci, S. Kuhlmann, Mantova and Matusinski - 2019]: How to use these properties to define more general exponential and logarithmic functions on fields of Hahn series.

III. 5 - Transseries and cuts as numbers

[Berarducci, Mantova - 2017]: There is a unique embedding $\mathrm{T}_{\mathrm{LE}} \longrightarrow$ No which commutes with transfinite sums and exponentials, and sends x to ω.
numbers as generalized transseries \longrightarrow filling cuts $\boldsymbol{c} \equiv(L, R)$ in $\mathbb{T}_{\text {LE }}$ with numbers $\{L \mid R\} ?$
[Berarducci, Mantova - 2017]: There is a unique embedding $\mathbb{T}_{\text {LE }} \longrightarrow$ No which commutes with transfinite sums and exponentials, and sends x to ω.
numbers as generalized transseries \rightarrow filling cuts $\boldsymbol{c} \equiv(L, R)$ in $\mathbb{T}_{\text {LE }}$ with numbers $\{L \mid R\} ?$

Vertical cuts as numbers

We have $E_{n}(\omega)=\omega^{\cdot \cdot \omega}$ (n times) for all $n \in \mathbb{N}$. So the number

$$
\varepsilon_{0}=\left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots \mid \varnothing\right\}
$$

is the simplest «transexponential » number. Candidate for e_{ω} in No?

III. 5 - Transseries and cuts as numbers

[Berarducci, Mantova - 2017]: There is a unique embedding $\mathbb{T}_{\text {LE }} \longrightarrow$ No which commutes with transfinite sums and exponentials, and sends x to ω.
numbers as generalized transseries \rightarrow filling cuts $\boldsymbol{c} \equiv(L, R)$ in $\mathbb{T}_{\text {LE }}$ with numbers $\{L \mid R\} ?$

Vertical cuts as numbers

We have $E_{n}(\omega)=\omega^{\cdot \cdot \omega}$ (n times) for all $n \in \mathbb{N}$. So the number

$$
\varepsilon_{0}=\left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots \mid \varnothing\right\}
$$

is the simplest «transexponential » number. Candidate for e_{ω} in No?

Nested cuts as numbers

Candidate for f_{o} : the corresponding number

$$
\left\{\omega, \omega+\mathrm{e}^{\sqrt{\log \omega}}, \omega+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log 2 \omega}}}, \ldots \mid \ldots, \omega+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{r \sqrt{\log 2}}}, \omega+\mathrm{e}^{r \sqrt{\log \omega}}, r \omega: r>1\right\} .
$$

III. 6 - Surreal substructures

Definition

A surreal substructure is a class $\mathbf{S} \subseteq$ No such that ($\mathbf{S}, \leqslant, \longleftarrow$) and ($\mathbf{N o}, \leqslant, \longleftarrow$) are isomorphic. There is a unique such isomorphism $\Xi_{\mathbf{s}} \mathbf{~} \mathbf{N o} \longrightarrow \mathbf{S}$.
\longrightarrow each $a \in \mathbf{S}$ is determined by its «label» z in $a=\Xi_{\mathbf{S}}(z)$.

III. 6 - Surreal substructures

Definition

A surreal substructure is a class $\mathbf{S} \subseteq$ No such that $(\mathbf{S}, \leqslant, \sqsubseteq)$ and (No, $\leqslant, \sqsubseteq)$ are isomorphic. There is a unique such isomorphism $\Xi_{\mathbf{S}}: \mathbf{N o} \longrightarrow \mathbf{S}$.
\longrightarrow each $a \in \mathbf{S}$ is determined by its «label » z in $a=\Xi_{\mathbf{S}}(z)$.

Numerous classes involved in the study of No are surreal substructures:

- The class $\mathbf{N o}{ }^{>R}$ of positive infinite numbers.
- The class $\mathbf{N o}^{<}$of infinitesimals.
- The class Mo of monomials.
- The class $\mathbb{R}\left[\left[\mathbf{M o}^{>1}\right]\right]=L_{1}(\mathbf{M o})$ of so-called purely infinite numbers.
- The class $\mathbf{M o} \mathbf{o}_{\omega}=\bigcap_{n \in \mathbb{N}} E_{n}(\mathbf{M o})$ of «log-atomic » numbers.

III. 7 - Surreal hyperexponentiation (1)

The first hyperlogarithm $L_{\omega}: \mathbf{N o}^{>\mathrm{R}} \longrightarrow \mathbf{N o}{ }^{>\mathrm{R}}$ can be defined using simple rules:

Defining L_{ω} on No [with van der Hoeven and Mantova]

- We must have $L_{\omega}^{\prime}=\frac{1}{L_{0} L_{1} L_{2} L_{3} \cdots}$, so $L_{\omega}^{\prime \prime}=-\sum_{k \in \mathbb{N}} \frac{1}{L_{k} L_{k+1} \cdots}$, and so on...

The first hyperlogarithm $L_{\omega}: \mathbf{N o}^{>\mathrm{R}} \longrightarrow \mathbf{N o}^{>\mathrm{R}}$ can be defined using simple rules:

Defining L_{ω} on No [with van der Hoeven and Mantova]

- We must have $L_{\omega}^{\prime}=\frac{1}{L_{0} L_{1} L_{2} L_{3} \cdots}$, so $L_{\omega}^{\prime \prime}=-\sum_{k \in \mathbb{N}} \frac{1}{L_{k} L_{k+1} \cdots}$, and so on...
- Let $a \in \mathbf{N o}{ }^{>R}$. We assume that $L_{\omega}(a)$ is defined, and try to define $L_{\omega}(a+\varepsilon)$ for each $\varepsilon<1$. The family $\left(L_{\omega}^{(k)}(a) \varepsilon^{k}\right)_{k>0}$ is summable. So we set

$$
L_{\omega}(a+\varepsilon):=\sum_{k \geqslant 0} \frac{L_{\omega}^{(k)}(a)}{k!} \varepsilon^{k}
$$

The first hyperlogarithm $L_{\omega}: \mathbf{N o}^{>\mathrm{R}} \longrightarrow \mathbf{N o}^{>\mathrm{R}}$ can be defined using simple rules:

Defining L_{ω} on No [with van der Hoeven and Mantova]

- We must have $L_{\omega}^{\prime}=\frac{1}{L_{0} L_{1} L_{2} L_{3} \cdots}$, so $L_{\omega}^{\prime \prime}=-\sum_{k \in \mathbb{N}} \frac{1}{L_{k} L_{k+1} \cdots}$, and so on...
- Let $a \in \mathbf{N o}^{>R}$. We assume that $L_{\omega}(a)$ is defined, and try to define $L_{\omega}(a+\varepsilon)$ for each $\varepsilon<1$. The family $\left(L_{\omega}^{(k)}(a) \varepsilon^{k}\right)_{k>0}$ is summable. So we set

$$
L_{\omega}(a+\varepsilon):=\sum_{k \geqslant 0} \frac{L_{\omega}^{(k)}(a)}{k!} \varepsilon^{k} .
$$

Define L_{ω} on a class \mathbf{S} with $\forall b \in \mathbf{N o}^{\triangle \mathbb{R}}, \exists n \in \mathbb{N}, L_{n}(b)=: a+\varepsilon \in \mathbf{S}+\mathbf{N o}{ }^{-1}$. Then

$$
L_{\omega}(b)=L_{\omega}\left(E_{n}(a+\varepsilon)\right)_{\mathrm{Abel} \mathrm{eq}}^{\overline{\overline{2}}} n+L_{\omega}(a+\varepsilon)=n+\sum_{k=0}^{+\infty} \frac{L_{\omega}^{(k)}(a)}{k!} \varepsilon^{k} .
$$

The class $\mathbf{M o}_{\omega}$ of log-atomic numbers satisfies the previous conditions. For $a, b \in \mathbf{N o}^{\supset \mathbb{R}}$ with $a<b$, we require

$$
\begin{aligned}
& L_{\omega}(a)<L_{n}(a) \text { and } \\
& L_{\omega}(a)<L_{\omega}(b),
\end{aligned}
$$

which calls for the following inductive definition of $\widetilde{L_{\omega}}$:

The class $\mathbf{M o}_{\omega}$ of log-atomic numbers satisfies the previous conditions. For $a, b \in \mathbf{N o}{ }^{>R}$ with $a<b$, we require

$$
\begin{aligned}
& L_{\omega}(a)<L_{n}(a) \text { and } \\
& L_{\omega}(a)<L_{\omega}(b)
\end{aligned}
$$

which calls for the following inductive definition of $\check{L_{\omega}}$:

$$
\forall \mathfrak{a} \in \mathbf{M o}_{\omega}, \widetilde{L_{\omega}}(\mathfrak{a}):=\left\{\widetilde{L_{\omega}}\left(\mathfrak{a}^{\prime}\right)+\frac{1}{L_{n}\left(\mathfrak{a}^{\prime}\right)} \left\lvert\, \widetilde{L_{\omega}}\left(\mathfrak{a}^{\prime \prime}\right)-\frac{1}{L_{n}\left(\mathfrak{a}^{\prime \prime}\right)}\right., L_{n}(\mathfrak{a})\right\}
$$

for generic $\mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime}$ with $\mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime} \in \mathbf{M o} \mathbf{o}_{\omega}, \mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime} \sqsubseteq \mathfrak{a}, \mathfrak{a}^{\prime}<\mathfrak{a}<\mathfrak{a}^{\prime \prime}$ and $n \in \mathbb{N}$.

The class $\mathbf{M o}_{\omega}$ of log-atomic numbers satisfies the previous conditions. For $a, b \in \mathbf{N o}{ }^{>R}$ with $a<b$, we require

$$
\begin{aligned}
& L_{\omega}(a)<L_{n}(a) \text { and } \\
& L_{\omega}(a)<L_{\omega}(b)
\end{aligned}
$$

which calls for the following inductive definition of $\widetilde{L_{\omega}}$:

$$
\forall \mathfrak{a} \in \mathbf{M o}_{\omega}, \widetilde{L_{\omega}}(\mathfrak{a}):=\left\{\widetilde{L_{\omega}}\left(\mathfrak{a}^{\prime}\right)+\frac{1}{L_{n}\left(\mathfrak{a}^{\prime}\right)} \left\lvert\, \widetilde{L_{\omega}}\left(\mathfrak{a}^{\prime \prime}\right)-\frac{1}{L_{n}\left(\mathfrak{a}^{\prime \prime}\right)}\right., L_{n}(\mathfrak{a})\right\}
$$

for generic $\mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime}$ with $\mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime} \in \mathbf{M o} \mathbf{o}_{\omega}, \mathfrak{a}^{\prime}, \mathfrak{a}^{\prime \prime} \subseteq \mathfrak{a}, \mathfrak{a}^{\prime}<\mathfrak{a}<\mathfrak{a}^{\prime \prime}$ and $n \in \mathbb{N}$.

Theorem

This generalizes to $L_{\omega^{\mu}}$ for each $\mu \in \mathbf{O n}$. We obtain a composition law

$$
\circ: \tilde{\mathrm{L}} \times \mathbf{N o}^{>\mathrm{R}} \longrightarrow \mathbf{N o} . \quad(\tilde{\mathrm{L}} \subsetneq \mathbf{N o})
$$

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{M o}^{\neq 1}$, there are $\alpha, \beta \in \mathbf{O n}, u, \psi \in \mathbf{N o}, \iota \in\{-1,1\}$ such that \mathfrak{m} expands uniquely as

$$
\mathfrak{m}=\mathrm{e}^{\psi}\left(L_{\beta} E_{\alpha}^{u}\right)^{\iota} \quad\left(=\exp (\psi) \times\left(L_{\beta}\left(E_{\alpha}(u)\right)\right)^{\iota}\right)
$$

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{M o}^{\neq 1}$, there are $\alpha, \beta \in \mathbf{O n}, u, \psi \in \mathbf{N o}, \iota \in\{-1,1\}$ such that \mathfrak{m} expands uniquely as

$$
\mathfrak{m}=\mathrm{e}^{\psi}\left(L_{\beta} E_{\alpha}^{u}\right)^{\iota} \quad\left(=\exp (\psi) \times\left(L_{\beta}\left(E_{\alpha}(u)\right)\right)^{\iota}\right) .
$$

Constructing paths in numbers

Fix $a_{0} \in \mathbf{N o}^{\times}$. At each stage i, pick a term $r_{i} \mathfrak{m}_{i}$ in a_{i} seen as a Hahn series, and expand it as

$$
r_{i} \mathfrak{m}_{i}=r_{i} \mathrm{e}^{\psi_{i}}\left(L_{\beta_{i}} E_{\alpha_{i}}^{u_{i}}\right)^{\iota_{i}} .
$$

Then choose $a_{i+1} \in\left\{\psi_{i}, u_{i}\right\}$ with the restrictions

$$
\left(\psi_{i}=0 \Longrightarrow a_{i} \neq \psi_{i}\right) \text { and }\left(E_{\alpha_{i}}^{u_{i}}=\omega \Longrightarrow a_{i} \neq u_{i}\right)
$$

This defines a path $\left(\mathfrak{m}_{i}\right)_{i<\ell}, \ell \leqslant \omega$ in $a_{0}\left(\ell<\omega\right.$ if and only if $\mathfrak{m}_{i}=\left(L_{\beta_{i}}(\omega)\right)^{\iota_{i}}$ for some $\left.i\right)$.

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{M o}^{\neq 1}$, there are $\alpha, \beta \in \mathbf{O n}, u, \psi \in \mathbf{N o}, \iota \in\{-1,1\}$ such that \mathfrak{m} expands uniquely as

$$
\mathfrak{m}=\mathrm{e}^{\psi}\left(L_{\beta} E_{\alpha}^{u}\right)^{\iota} \quad\left(=\exp (\psi) \times\left(L_{\beta}\left(E_{\alpha}(u)\right)\right)^{\iota}\right)
$$

Constructing paths in numbers

Fix $a_{0} \in \mathbf{N o}{ }^{\times}$. At each stage i, pick a term $r_{i} \mathfrak{m}_{i}$ in a_{i} seen as a Hahn series, and expand it as

$$
r_{i} \mathfrak{m}_{i}= \pm \mathrm{e}^{\psi_{i}}\left(L_{\beta_{i}} E_{\alpha_{i}}^{u_{i}}\right)^{\iota_{i}}
$$

Then choose $a_{i+1} \in\left\{\psi_{i}, u_{i}\right\}$ with the restrictions

$$
\left(\psi_{i}=0 \Longrightarrow a_{i} \neq \psi_{i}\right) \text { and } \quad\left(E_{\alpha_{i}}^{u_{i}}=\omega \Longrightarrow a_{i} \neq u_{i}\right)
$$

This defines a path $\left(\mathfrak{m}_{i}\right)_{i<\ell}$ in a_{0}. It is well-nested if for large enough i, we have

$$
\beta_{i}=0, \mathfrak{m}_{i+1} \notin \operatorname{supp} \psi_{i}, \mathfrak{m}_{i+1}=\min \operatorname{supp} u_{i}, \text { and } r_{i} \in\{-1,1\} .
$$

III. 10 - Numbers as hyperseries

Describing numbers as hyperseries

A) existence of infinite paths \rightarrow yes, e.g. there are numbers $a_{0} \in$ No which expand as

$$
a_{0}=\omega+E_{1}^{\sqrt{L_{1}(\omega)}+\mathrm{e}^{\sqrt{L_{2}(\omega)}} E_{\omega}^{\sqrt{L_{\omega}(\omega)}+\mathrm{e}^{\sqrt{L_{\omega_{0}}(\omega)}} \dot{\overrightarrow{\omega^{2}}}}{ }^{\dot{2}}}
$$

III． 10 －Numbers as hyperseries

Describing numbers as hyperseries

1），\ish＇mいい！inlimil！rall心
B）structure of infinite paths \rightarrow well－nested paths

III. 10 - Numbers as hyperseries

Describing numbers as hyperseries

C) mutiplicity of numbers with a given expansion \rightarrow by B), infinite expansions end up as

$$
a_{i}=\varphi_{i} \pm \mathrm{e}^{\psi_{i}}\left(E_{\alpha_{i}}^{\varphi_{i+1} \pm\left(E_{\dot{\alpha}_{i+1}}^{*}\right)^{\iota_{i+1}}}\right)^{\iota_{i}}, \quad \text { for large enough } i \text {, for some } \varphi_{i}^{\prime} \text { 's. }
$$

Theorem: For large enough i, numbers which expand as a_{i} form a surreal substructure.

III. 10 - Numbers as hyperseries

Describing numbers as hyperseries

A) existence of infinite paths \rightarrow yes
B) structure of infinite paths \rightarrow well-nested paths
C) mutiplicity of numbers with a given expansion? \rightarrow ultimately \simeq No

Theorem

Using this description of paths, one can represent any surreal number a as a tree labelled by real and ordinal numbers

Thank you!

