Hyperseries and surreal Numbers*

09-03-2021

a PhD supervised by Joris van der Hoeven and Françoise Point

^{*.} This document has been written using GNU $T_E X_{MACS}$; see www.texmacs.org.

I - Functions

I.1 - Hardy fields

Germs at +∞

asymptotic = *as the variable is large enough*

We identify two functions f, g in

$$\bigcap_{n\in\mathbb{N}}\bigcup_{r\in\mathbb{R}}C^n((r,+\infty),\mathbb{R}),$$

if f(r) = g(r) for all sufficiently large $r \in \mathbb{R}$ (written $r \gg 1$).

G: differential ring of equivalence classes, called **germs** at $+\infty$.

I.1 - Hardy fields

Germs at +∞

asymptotic = *as the variable is large enough*

We identify two functions f, g in

 $\bigcap_{n\in\mathbb{N}}\bigcup_{r\in\mathbb{R}}C^n((r,+\infty),\mathbb{R}),$

if f(r) = g(r) for all sufficiently large $r \in \mathbb{R}$ (written $r \gg 1$).

G: differential ring of equivalence classes, called **germs** at $+\infty$.

Definition

Hardy fields are differential subfields of \mathcal{G} containing \mathbb{R} . Ordered by

$$f < g \iff \forall r \gg 1, f(r) < g(r).$$

E.g. $\mathbb{R}((x^r)_{r \in \mathbb{R}})$, $\mathbb{R}(x, \arctan x)$, $\mathbb{R}(x, e^x)$, and $\mathbb{R}(\log x, \log \log x)$.

I.2 - Further examples

O-minimality and Hardy fields

Let $\mathcal{R} = (\mathbb{R}, +, \times, <, ...)$ be an o-minimal extension of the real ordered field. Write $\mathcal{H}(\mathcal{R})$ for the set of germs at $+\infty$ of functions $(a, +\infty) \longrightarrow \mathbb{R}, a \in \mathbb{R}$ that are definable in \mathcal{R} . Then $\mathcal{H}(\mathcal{R})$ is a Hardy field.

In particular $\mathcal{H}(\mathbb{R}_{exp})$ is a Hardy field.

I.2 - Further examples

O-minimality and Hardy fields

Let $\mathcal{R} = (\mathbb{R}, +, \times, <, ...)$ be an o-minimal extension of the real ordered field. Write $\mathcal{H}(\mathcal{R})$ for the set of germs at $+\infty$ of functions $(a, +\infty) \longrightarrow \mathbb{R}, a \in \mathbb{R}$ that are definable in \mathcal{R} . Then $\mathcal{H}(\mathcal{R})$ is a Hardy field.

In particular $\mathcal{H}(\mathbb{R}_{exp})$ is a Hardy field.

Maximal Hardy fields	
A Hardy field \mathcal{H} is said maximal if it has no proper superset which is a Hardy field.	
Conjecture 1 (ADH) :	The structure $(\mathcal{H}, +, \times, <, <, \partial)$ is elementarily equivalent to the field of log-exp transseries.
Conjecture 2 (ADH) :	For all countable subsets $L, R \subseteq \mathcal{H}$ with $L < R$, there is an $f \in \mathcal{H}$ with $L < f < R$.

I.3 - Hyperexponentials

Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function E_{ω} : $\mathbb{R} \longrightarrow \mathbb{R}$ *which solves* **Abel's equation***:*

$$\forall r \gg 1, E_{\omega}(r+1) = \exp(E_{\omega}(r)).$$

We have $E_{\omega}(r) > e^{e^{e^{r}}}$ for $r \gg 1$: E_{ω} is a **hyperexponential** function.

I.3 - Hyperexponentials

Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function $E_{\omega}: \mathbb{R} \longrightarrow \mathbb{R}$ which solves **Abel's equation**:

$$\forall r \gg 1, E_{\omega}(r+1) = \exp(E_{\omega}(r)).$$

We have $E_{\omega}(r) > e^{e^{r}}$ for $r \gg 1$: E_{ω} is a **hyperexponential** function.

Theorem [Boschernitzan - 1986]

 $\mathbb{R}(E_{\omega}, E'_{\omega}, E''_{\omega}, ...)$ is a Hardy field.

I.3 - Hyperexponentials

Theorem [H. Kneser - 1949]

There is a strictly increasing analytic function $E_{\omega}: \mathbb{R} \longrightarrow \mathbb{R}$ which solves **Abel's equation**:

$$\forall r \gg 1, E_{\omega}(r+1) = \exp(E_{\omega}(r)).$$

We have $E_{\omega}(r) > e^{e^{e^{r}}}$ for $r \gg 1$: E_{ω} is a **hyperexponential** function.

Theorem [Boschernitzan - 1986]

 $\mathbb{R}(E_{\omega}, E'_{\omega}, E''_{\omega}, ...)$ is a Hardy field.

Theorem [Padgett - 2022]

There is a Hardy field \mathcal{H} containing $\mathcal{H}_{an,exp}$, the germ of E_{ω} , its inverse L_{ω} , and which is closed under composition of germs.

II - Series

Definition: Hahn series [Hahn - 1907]

Let $(\mathfrak{M}, \times, \prec)$ be a linearly ordered abelian group. The **Hahn series** field $\mathbb{R}[[\mathfrak{M}]]$ is the class of functions $f: \mathfrak{M} \longrightarrow \mathbb{R}$ whose support

 $\operatorname{supp} f := \{ \mathfrak{m} \in \mathfrak{M} : f(\mathfrak{m}) \neq 0 \} \subseteq \mathfrak{M}$

is a well-ordered <u>subset</u> of (\mathfrak{M}, \succ) . $\mathbb{R}[[\mathfrak{M}]]$ is an ordered valued field.

Definition: Hahn series [Hahn - 1907]

Let $(\mathfrak{M}, \times, \prec)$ be a linearly ordered abelian group. The **Hahn series** field $\mathbb{R}[[\mathfrak{M}]]$ is the class of functions $f: \mathfrak{M} \longrightarrow \mathbb{R}$ whose support

 $\operatorname{supp} f := \{ \mathfrak{m} \in \mathfrak{M} : f(\mathfrak{m}) \neq 0 \} \subseteq \mathfrak{M}$

is a well-ordered <u>subset</u> of (\mathfrak{M}, \succ) . $\mathbb{R}[[\mathfrak{M}]]$ is an ordered valued field:

Pointwise sum / Cauchy product:

 $(f+g) = \mathfrak{m} \longmapsto f(\mathfrak{m}) + g(\mathfrak{m}) \qquad / \qquad (fg) = \mathfrak{m} \longmapsto \sum_{\mathfrak{uv} = \mathfrak{m}} f(\mathfrak{u}) g(\mathfrak{v})$

Order / valuation:

 $0 < f \iff 0 < f(\max \operatorname{supp} f)$ / $f < g \iff \max \operatorname{supp} f < \max \operatorname{supp} g$ *Identification:*

Each $f \in \mathbb{R}[[\mathfrak{M}]]$ is seen as the formal series $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f_{\mathfrak{m}} \mathfrak{m}$.

II.2 - Summable families

Fix a Hahn series field $S = \mathbb{R}[[\mathfrak{M}]]$. Idea: infinite pointwise sums in S.

Definition

Let I be a set, and let $(f_i)_{i \in I} \in \mathbb{S}^I$ be a family. We say that $(f_i)_{i \in I}$ is **summable** if

- *i.* The set $\bigcup_{i \in I} \operatorname{supp} f_i$ is well-ordered in (\mathfrak{M}, \succ) .
- *ii.* For all $\mathfrak{m} \in \mathfrak{M}$, the set $I_{\mathfrak{m}} := \{i \in I : \mathfrak{m} \in \operatorname{supp} f_i\}$ is finite.

Then the following is a well-defined element of *\$*:

$$\sum_{i\in I} f_i := \sum_{\mathfrak{m}\in\mathfrak{M}} \left(\sum_{i\in I_\mathfrak{m}} f_i(\mathfrak{m})\right)\mathfrak{m}.$$

II.2 - Summable families

Fix a Hahn series field $S = \mathbb{R}[[\mathfrak{M}]]$. Idea: infinite pointwise sums in S.

Definition

Let I be a set, and let $(f_i)_{i \in I} \in \mathbb{S}^I$ be a family. We say that $(f_i)_{i \in I}$ is **summable** if

- *i.* The set $\bigcup_{i \in I} \operatorname{supp} f_i$ is well-ordered in (\mathfrak{M}, \succ) .
- *ii.* For all $\mathfrak{m} \in \mathfrak{M}$, the set $I_{\mathfrak{m}} := \{i \in I : \mathfrak{m} \in \operatorname{supp} f_i\}$ is finite.

Then the following is a well-defined element of *\$*:

$$\sum_{i\in I} f_i := \sum_{\mathfrak{m}\in\mathfrak{M}} \left(\sum_{i\in I_{\mathfrak{m}}} f_i(\mathfrak{m})\right)\mathfrak{m}.$$

[B. Neumann - 1949] For $(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$ and $\varepsilon < 1$, the family $(a_n \varepsilon^n)_{n \in \mathbb{N}}$ is summable.

e.g.
$$\frac{1}{1+\varepsilon} = \sum_{n \in \mathbb{N}} (-1)^n \varepsilon^n$$
.

Field \mathbb{T}_{LE} of **log-exp transseries**: Hahn series involving formal terms *x*, log *x* and e^x and combinations thereof.

e.g.
$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p$$
 is a log-exp transseries.

The number of iterations of exp and log must be uniformly bounded.

Field \mathbb{T}_{LE} of **log-exp transseries**: Hahn series involving formal terms *x*, log *x* and e^x and combinations thereof.

e.g.
$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p$$
 is a log-exp transseries.

The number of iterations of exp and log must be uniformly bounded.

Structure

 \mathbb{T}_{LE} enjoys a **derivation** $\partial: \mathbb{T}_{\text{LE}} \longrightarrow \mathbb{T}_{\text{LE}}$ which acts termwise, e.g.

Field \mathbb{T}_{LE} of **log-exp transseries**: Hahn series involving formal terms *x*, log *x* and e^x and combinations thereof.

e.g.
$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p$$
 is a log-exp transseries.

The number of iterations of exp and log must be uniformly bounded.

Structure

 \mathbb{T}_{LE} enjoys a **derivation** $\partial: \mathbb{T}_{LE} \longrightarrow \mathbb{T}_{LE}$ which acts termwise, e.g.

$$\partial f = \sum_{n=1}^{+\infty} (n-1)! e^{x/n} + \frac{1}{x \log x} - 2x^{-3} \log x + x^{-3} + \sum_{p=0}^{+\infty} (px^{p-1} - (p+1)x^p) e^{-x^{p+1}}$$

Field \mathbb{T}_{LE} of **log-exp transseries**: Hahn series involving formal terms *x*, log *x* and e^x and combinations thereof.

e.g.
$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p$$
 is a log-exp transseries.

The number of iterations of exp and log must be uniformly bounded.

Structure

 \mathbb{T}_{LE} enjoys a **composition law** $:: \mathbb{T}_{LE} \times \mathbb{T}_{LE}^{>\mathbb{R}} \longrightarrow \mathbb{T}_{LE}$ which acts termwise on the right:

Field \mathbb{T}_{LE} of **log-exp transseries**: Hahn series involving formal terms *x*, log *x* and e^x and combinations thereof.

e.g.
$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p$$
 is a log-exp transseries.

The number of iterations of exp and log must be uniformly bounded.

Structure

 \mathbb{T}_{LE} enjoys a **composition law** $:: \mathbb{T}_{LE} \times \mathbb{T}_{LE}^{\mathbb{R}} \longrightarrow \mathbb{T}_{LE}$ which acts termwise on the right:

$$f \circ \log x = \sum_{n=1}^{+\infty} n! x^{1/n} + \log_3 x + 7 + (\log x)^{-2} \log_2 x + \sum_{p=0}^{+\infty} e^{-(\log x)^{p+1}} (\log x)^p.$$

Cuts in Π_{LE} [van der Hoeven - 2006]

- A cut (in \mathbb{T}_{LE}) is an \leq -initial subset $c \subseteq \mathbb{T}_{LE}$ without supremum in (\mathbb{T}_{LE}, \leq)
- Monotonous operations c₁ + c₂, c₁ × c₂, e^{c₁} on cuts c₁, c₂. Also ∂(c₁) for certain cuts.
 Problem: cut operations behave quite differently as standard operations.

"Good" way to define operations on cuts? Yes: surreal numbers.

• Classification of cuts in $\mathbb{T}_g \subsetneq \mathbb{T}_{LE}$ using the cut operations and transseries $f \in \mathbb{T}_g$.

11/28

A) "Horizontal" cuts related to missing pseudo-limits:

$$\begin{split} \mathbf{L} &:= \{f : \exists n \in \mathbb{N}, f < \log x + \log_2 x + \dots + \log_n x\} \\ \mathbf{\Lambda} &:= \left\{ f : \exists n \in \mathbb{N}, f < \frac{1}{x} + \frac{1}{x \log x} + \dots + \frac{1}{x \log x \dots \log_n x} \right\} \\ \mathbf{\Gamma} &:= e^{-\mathbf{L}} = \left\{ f : \forall n \in \mathbb{N}, f < \frac{1}{x \log x \dots \log_n x} \right\}. \end{split}$$

11/28

A) "Horizontal" cuts related to missing pseudo-limits:

$$\begin{split} \mathbf{L} &:= \{f : \exists n \in \mathbb{N}, f < \log x + \log_2 x + \dots + \log_n x\} \\ \mathbf{\Lambda} &:= \left\{ f : \exists n \in \mathbb{N}, f < \frac{1}{x} + \frac{1}{x \log x} + \dots + \frac{1}{x \log x \dots \log_n x} \right\} \\ \mathbf{\Gamma} &:= e^{-\mathbf{L}} = \left\{ f : \forall n \in \mathbb{N}, f < \frac{1}{x \log x \dots \log_n x} \right\}. \end{split}$$

Horizontal cuts / difference equations / Hahn series

The difference equation

$$f - f \circ \log x = \log x \quad (\mathcal{E}_h)$$

has no solution in \mathbb{T}_{LE} . Any solution f in $\mathbb{T} \supseteq \mathbb{T}_{LE}$ fills \mathbf{L} .

Solution: $f = \log x + \log_2 x + \cdots$ in $\mathbb{R}[[\mathfrak{M}]] \supseteq \mathbb{T}_{LE}$. We have $\partial(\mathbf{L}) = \mathbf{\Lambda}$; we expect that

$$\partial (\log x + \log_2 x + \cdots) = \frac{1}{x} + \frac{1}{x \log x} + \cdots + \frac{1}{x \log x \cdots \log_n x} + \cdots$$

B) "Vertical" cuts

$$\Omega := \mathbb{T}_{\text{LE}} = \{ f : \exists n \in \mathbb{N}, f < e^{\cdot \cdot \cdot e^x} (n \text{ times}) \}$$
$$\infty = \{ f : \exists r \in \mathbb{R}, f < r \} = \{ f : \forall n \in \mathbb{N}, f < \log_n x \}.$$

B) "Vertical" cuts

$$\Omega := \mathbb{T}_{\text{LE}} = \{ f : \exists n \in \mathbb{N}, f < e^{\cdot \cdot \cdot e^{x}} (n \text{ times}) \}$$
$$\infty = \{ f : \exists r \in \mathbb{R}, f < r \} = \{ f : \forall n \in \mathbb{N}, f < \log_{n} x \}.$$

Vertical cuts / conjugation equations / hyperseries

The formal version of Abel's equations

$$f \circ (x+1) = e^x \circ f$$
 (\mathcal{E}_v^+) and $f \circ \log x = f-1$ (\mathcal{E}_v^-)

have no solution in \mathbb{T}_{LE} . Any solution of (\mathcal{E}_{ν}^{+}) (resp. (\mathcal{E}_{ν}^{-})) fills Ω (resp. ∞). **Solutions:** "hyperexponential" $f_{\nu}^{+} = e_{\omega}$ and "hyperlogarithm" $f_{\nu}^{-} = \ell_{\omega}$. Note that $\partial(\infty) = \Gamma$. Indeed we expect that

$$\partial(\ell_{\omega}) = \frac{1}{x \log x \cdots \log_n x \cdots}$$

C) "Oblique" cuts

$$\mathbf{N} := \left\{ f : \exists n \in \mathbb{N}, f < x + e^{\sqrt{\log x} + e^{-\sqrt{\log nx}}} \right\}.$$

C) "Oblique" cuts

$$\mathbf{N} := \left\{ f : \exists n \in \mathbb{N}, f < x + e^{\sqrt{\log x} + e^{-\sqrt{\log nx}}} \right\}.$$

Oblique cuts / mixed equations / nested series

The equation

$$f = x + e^{f \cdot \log x} \qquad f \sim x \qquad (\mathcal{E}_o)$$

has no solution in \mathbb{T}_{LE} . Any solution f_o of (\mathcal{E}_o) would fill N.

Solutions: "Syntactic" solutions

$$f_o = x + e^{\sqrt{\log x} + e^{\sqrt{\log_2 x} + e^{x}}}.$$

[Schmeling - 2001]: It is consistent to consider fields of transseries containing f_0 .

II.6 - Hyperseries

A field of hyperseries [Schmeling - 2001]

Schmeling defines a Hahn series field $\mathbb{H}_{<\omega}$ with functions E_{ω^k} , L_{ω^k} for all $k \in \mathbb{N}$, where

$$E_{\omega^{k}} \circ L_{\omega^{k}} = L_{\omega^{k}} \circ E_{\omega^{k}} = \operatorname{id}_{\mathbb{H}_{<\omega}}, \quad and$$
$$E_{\omega^{k+1}}(s+1) = E_{\omega^{k}} \circ E_{\omega^{k+1}}(s) \quad for \ all \ k \in \mathbb{N} \ and \ s \in \mathbb{H}_{<\omega}^{>\mathbb{R}}$$

II.6 - Hyperseries

A field of hyperseries [Schmeling - 2001]

Schmeling defines a Hahn series field $\mathbb{H}_{<\omega}$ with functions E_{ω^k} , L_{ω^k} for all $k \in \mathbb{N}$, where

$$E_{\omega^{k}} \circ L_{\omega^{k}} = L_{\omega^{k}} \circ E_{\omega^{k}} = \operatorname{id}_{\mathbb{H}_{<\omega}}, \quad and$$
$$E_{\omega^{k+1}}(s+1) = E_{\omega^{k}} \circ E_{\omega^{k+1}}(s) \quad for \ all \ k \in \mathbb{N} \ and \ s \in \mathbb{H}_{<\omega}^{>\mathbb{R}}$$

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2019] Field (\mathbb{L} , ', \circ) of logarithmic hyperseries, given as $\mathbb{L} = \mathbb{R}[[\mathfrak{L}]]$ where

$$\mathfrak{L}$$
 is the group of formal products $\mathfrak{l} = \prod_{\gamma < \rho} \ell_{\gamma}^{\mathfrak{l}_{\gamma}}, \ (\mathfrak{l}_{\gamma})_{\gamma < \rho} \in \mathbb{R}^{\rho},$

(lexicographic order and pointwise product). Set $\ell_{\omega^{\mu}+\gamma} := \ell_{\gamma} \circ \ell_{\omega^{\mu}}$ for all $\gamma < \omega^{\mu+1}$ and

$$\ell_{\rho}' = \frac{1}{\prod_{\gamma < \rho} \ell_{\gamma}}$$
$$\ell_{\omega^{\mu+1}} \circ \ell_{\omega^{\mu}} = \ell_{\omega^{\mu+1}} - 1.$$

Definition

A hyperserial field is a Hahn series field $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ endowed with a function

 $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$, called the composition law,

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Definition

A hyperserial field is a Hahn series field $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ endowed with a function

 $: \mathbb{L} \times \mathbb{T}^{\mathbb{R}} \longrightarrow \mathbb{T}$, called the composition law,

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Compatibility For all $s \in \mathbb{T}^{\mathbb{R}}$, the function $h \mapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $(\sum_{i \in I} f_i) \circ s = \sum_{i \in I} f_i \circ s$ whenever $(f_i)_{i \in I}$ is summable.

Definition

A hyperserial field is a Hahn series field $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ endowed with a function

 $: \mathbb{L} \times \mathbb{T}^{\mathbb{R}} \longrightarrow \mathbb{T}$, called the composition law,

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Compatibility For all $s \in \mathbb{T}^{\mathbb{R}}$, the function $h \mapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $(\sum_{i \in I} f_i) \circ s = \sum_{i \in I} f_i \circ s$ whenever $(f_i)_{i \in I}$ is summable.

Associativity $f \circ (g \circ s) = (f \circ g) \circ s$ for all $g \in \mathbb{L}^{\mathbb{R}}$ and $s \in \mathbb{T}^{\mathbb{R}}$.

Definition

A hyperserial field is a Hahn series field $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ endowed with a function

 $: \mathbb{L} \times \mathbb{T}^{\mathbb{R}} \longrightarrow \mathbb{T}$, called the composition law,

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Compatibility For all $s \in \mathbb{T}^{\mathbb{R}}$, the function $h \mapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $(\sum_{i \in I} f_i) \circ s = \sum_{i \in I} f_i \circ s$ whenever $(f_i)_{i \in I}$ is summable.

Associativity $f \circ (g \circ s) = (f \circ g) \circ s$ for all $g \in \mathbb{L}^{\mathbb{R}}$ and $s \in \mathbb{T}^{\mathbb{R}}$.

Monotonicity $\ell_{\omega^{\mu}} \circ s < \ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $s, t \in \mathbb{T}^{>\mathbb{R}}$ with s < t.

Definition

A hyperserial field is a Hahn series field $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ endowed with a function

 $: \mathbb{L} \times \mathbb{T}^{\mathbb{R}} \longrightarrow \mathbb{T}$, called the composition law,

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Compatibility For all $s \in \mathbb{T}^{\mathbb{R}}$, the function $h \mapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $(\sum_{i \in I} f_i) \circ s = \sum_{i \in I} f_i \circ s$ whenever $(f_i)_{i \in I}$ is summable.

Associativity $f \circ (g \circ s) = (f \circ g) \circ s$ for all $g \in \mathbb{L}^{\mathbb{R}}$ and $s \in \mathbb{T}^{\mathbb{R}}$.

Monotonicity $\ell_{\omega^{\mu}} \circ s < \ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $s, t \in \mathbb{T}^{>\mathbb{R}}$ with s < t.

Taylor expansions $f \circ (s + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ t}{k!} \delta^k$ for all $s \in \mathbb{T}^{>\mathbb{R}}$, and $\delta \in \mathbb{T}$ with $\delta < s$.

Definition

A hyperserial field is a Hahn series field $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ endowed with a function

 $: \mathbb{L} \times \mathbb{T}^{\mathbb{R}} \longrightarrow \mathbb{T}, \quad called \ the \ composition \ law,$

which satisfies (among other technical details), for all $f \in \mathbb{L}$:

Compatibility For all $s \in \mathbb{T}^{\mathbb{R}}$, the function $h \mapsto h \circ s: \mathbb{L} \longrightarrow \mathbb{T}$ is a ring morphism with $(\sum_{i \in I} f_i) \circ s = \sum_{i \in I} f_i \circ s$ whenever $(f_i)_{i \in I}$ is summable.

Associativity $f \circ (g \circ s) = (f \circ g) \circ s$ for all $g \in \mathbb{L}^{\mathbb{R}}$ and $s \in \mathbb{T}^{\mathbb{R}}$.

Monotonicity $\ell_{\omega^{\mu}} \circ s < \ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $s, t \in \mathbb{T}^{>\mathbb{R}}$ with s < t.

Taylor expansions $f \circ (s + \delta) = \sum_{k \in \mathbb{N}} \frac{f^{(k)} \circ t}{k!} \delta^k$ for all $s \in \mathbb{T}^{>\mathbb{R}}$, and $\delta \in \mathbb{T}$ with $\delta < s$.

[van den Dries, van der Hoeven, Kaplan] (\mathbb{L}, \circ) itself is a hyperserial field.

II.8 - Reducing to partial hyperlogarithms

Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\mathbb{R}}$. We note that

1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $t \in \mathbb{T}^{\mathbb{R}}$.

II.8 - Reducing to partial hyperlogarithms

14/28

- Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\mathbb{R}}$. We note that
 - 1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $t \in \mathbb{T}^{\mathbb{R}}$.
 - 2. Each series $\ell_{\omega^{\mu}} \circ t$ is determined by the class of series $\ell_{\omega^{\mu}} \circ \mathfrak{a}$ where \mathfrak{a} ranges in a subclass $\mathfrak{M}_{\omega^{\mu}} \subset \mathfrak{M}$

II.8 - Reducing to partial hyperlogarithms

Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\mathbb{R}}$. We note that

- 1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $t \in \mathbb{T}^{\mathbb{R}}$.
- 2. Each series $\ell_{\omega^{\mu}} \circ t$ is determined by the class of series $\ell_{\omega^{\mu}} \circ \mathfrak{a}$ where \mathfrak{a} ranges in a subclass $\mathfrak{M}_{\omega^{\mu}} \subset \mathfrak{M}$.
- 3. For $\mu \in \mathbf{On}$, we have the following self-contained definition of $(\mathfrak{M}_{\omega^{\mu}})_{\mu \in \mathbf{On}}$:

$$\mathfrak{M}_{1} = \mathfrak{M}^{>1},$$

$$\mathfrak{M}_{\omega^{\mu+1}} = \{\mathfrak{m} \in \mathfrak{M} : \forall n \in \mathbb{N}, \ell_{\omega^{\mu}n} \circ \mathfrak{m} \in \mathfrak{M}_{\omega^{\mu}}\}, \text{ and}$$

$$\mathfrak{M}_{\omega^{\mu}} = \bigcap_{\iota < \mu} \mathfrak{M}_{\omega^{\iota}} \text{ if } \mu > 0 \text{ is a limit.}$$

II.8 - Reducing to partial hyperlogarithms

Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ be a hyperserial field, let $f \in \mathbb{L}$ and $s \in \mathbb{T}^{\mathbb{R}}$. We note that

- 1. The series $f \circ s$ is determined by the class of series $\ell_{\omega^{\mu}} \circ t$ for all $\mu \in \mathbf{On}$ and $t \in \mathbb{T}^{\mathbb{R}}$.
- 2. Each series $\ell_{\omega^{\mu}} \circ t$ is determined by the class of series $\ell_{\omega^{\mu}} \circ \mathfrak{a}$ where \mathfrak{a} ranges in a subclass $\mathfrak{M}_{\omega^{\mu}} \subset \mathfrak{M}$.
- 3. For $\mu \in \mathbf{On}$, we have the following self-contained definition of $(\mathfrak{M}_{\omega^{\mu}})_{\mu \in \mathbf{On}}$:

$$\mathfrak{M}_{1} = \mathfrak{M}^{>1},$$

$$\mathfrak{M}_{\omega^{\mu+1}} = \{\mathfrak{m} \in \mathfrak{M} : \forall n \in \mathbb{N}, \ell_{\omega^{\mu}n} \circ \mathfrak{m} \in \mathfrak{M}_{\omega^{\mu}}\}, \text{ and }$$

$$\mathfrak{M}_{\omega^{\mu}} = \bigcap_{\iota < \mu} \mathfrak{M}_{\omega^{\iota}} \text{ if } \mu > 0 \text{ is a limit.}$$

Goal: Defining \mathfrak{M}_{α} as in 3, find conditions on partial functions

$$\widecheck{L_{\alpha}}:\mathfrak{M}_{\alpha}\longrightarrow \mathbb{T};\mathfrak{a}\mapsto \ell_{\alpha}\circ\mathfrak{a}, \quad \alpha = \omega^{\mu}, \mu \in \mathbf{On}$$

so that $(\widetilde{L_{\alpha}})_{\alpha = \omega^{\mu}, \mu \in \mathbf{On}}$ determine a composition law $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$.

II.9 - Hyperserial skeletons

Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ and let $\check{L}_{\alpha}, \alpha \in \omega^{\mathbf{On}}$ be partial functions $\check{L}_{\alpha}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T}$. Consider a law

 $\mathbb{R} \times \mathfrak{M} \longrightarrow \mathfrak{M}; (r, \mathfrak{m}) \mapsto \mathfrak{m}^r$

of ordered \mathbb{R} -vector space on \mathfrak{M} , called the **real powering operation** on \mathfrak{M} .

II.9 - Hyperserial skeletons

Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ and let $\check{L}_{\alpha}, \alpha \in \omega^{\mathbf{On}}$ be partial functions $\check{L}_{\alpha}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T}$. Consider a law

 $\mathbb{R} \times \mathfrak{M} \longrightarrow \mathfrak{M}; (r, \mathfrak{m}) \mapsto \mathfrak{m}^r$

of ordered \mathbb{R} -vector space on \mathfrak{M} , called the **real powering operation** on \mathfrak{M} .

Our conditions on L_{α} are inequalities, the identities for the logarithm, and the restricted Abel equations:

$$\underbrace{\mathcal{L}_{\omega^{\mu+1}}}_{\mathcal{L}_{\omega^{\mu}}}(\mathfrak{a})) = \underbrace{\mathcal{L}_{\omega^{\mu+1}}}_{\mathcal{L}_{\omega^{\mu+1}}}(\mathfrak{a}) - 1 \quad \text{for all } \mu \in \mathbf{On} \text{ and } \mathfrak{a} \in \mathfrak{M}_{\omega^{\mu+1}}.$$

II.9 - Hyperserial skeletons

Let $\mathbb{T} = \mathbb{R}[[\mathfrak{M}]]$ and let $\check{L}_{\alpha}, \alpha \in \omega^{\mathbf{On}}$ be partial functions $\check{L}_{\alpha}: \mathfrak{M}_{\alpha} \longrightarrow \mathbb{T}$. Consider a law

 $\mathbb{R} \times \mathfrak{M} \longrightarrow \mathfrak{M}; (r, \mathfrak{m}) \mapsto \mathfrak{m}^r$

of ordered \mathbb{R} -vector space on \mathfrak{M} , called the **real powering operation** on \mathfrak{M} .

Our conditions on L_{α} are inequalities, the identities for the logarithm, and the restricted Abel equations:

$$\widetilde{L_{\omega^{\mu+1}}}(\widetilde{L_{\omega^{\mu}}}(\mathfrak{a})) = \widetilde{L_{\omega^{\mu+1}}}(\mathfrak{a}) - 1 \quad \text{for all } \mu \in \mathbf{On} \text{ and } \mathfrak{a} \in \mathfrak{M}_{\omega^{\mu+1}}.$$

Theorem

Assume that for all $\mu \in \mathbf{On}$, each $s \in \mathbb{T}^{>\mathbb{R}}$ is « sufficiently close » to an $\mathfrak{a}_s \in \mathfrak{M}_{\omega^{\mu}}$. Then there is a unique function $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ with $\ell_{\omega^{\mu}} \circ \mathfrak{a} = \widetilde{L_{\omega}}^{\mu}(\mathfrak{a})$ for all $\mu \in \mathbf{On}$ and $\mathfrak{a} \in \mathfrak{M}_{\omega^{\mu}}$, and such that (\mathbb{T}, \circ) is a hyperserial field.

II.10 - Hyperexponential closure

A hyperserial field (\mathbb{T}, \circ) is said **hyperexponentially closed** if for all $\mu \in \mathbf{On}$, the following function is bijective:

 $L_{\omega^{\mu}}: \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}}; s \mapsto \ell_{\omega^{\mu}} \circ s.$

II.10 - Hyperexponential closure

A hyperserial field (\mathbb{T}, \circ) is said **hyperexponentially closed** if for all $\mu \in \mathbf{On}$, the following function is bijective:

$$L_{\omega^{\mu}}: \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}}; s \mapsto \ell_{\omega^{\mu}} \circ s.$$

Theorem

There is a hyperexponentially closed extension $\iota: \mathbb{T} \longrightarrow \tilde{\mathbb{T}}$ such that for each hyperexponentially closed extension $\varphi: \mathbb{T} \longrightarrow \mathbb{U}$, there is a unique embedding $\psi: \mathbb{U} \longrightarrow \tilde{\mathbb{T}}$ with $\varphi = \psi \circ \iota$.

$$\begin{array}{cccc}
 & {}^{l} & \tilde{\mathbb{T}} \\
 & \varphi \searrow & \downarrow \exists ! \psi \\
 & \mathbb{U}
 \end{array}$$

III - Numbers

III.1 - Surreal numbers

Conway's class **No** of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<On}$ whose depths are arbitrary ordinals.

III.1 - Surreal numbers

Conway's class **No** of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<On}$ whose depths are arbitrary ordinals.

III.1 - Surreal numbers

Conway's class **No** of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<On}$ whose depths are arbitrary ordinals.

Simplicity: *a* is **simpler** than *b*, written $a \subseteq b$, if there is a (descending) path from *a* to *b* in the tree.

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a – minimum]

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a -minimum]

Well-founded order For $a \in \mathbf{No}$, we have two <u>sets</u> $a_L := \{b \in \mathbf{No}: b < a, b \subseteq a\}$ and $a_R := \{b \in \mathbf{No}: b > a, b \subseteq a\}$. So $a = \{a_L \mid a_R\}$. The partial order (\mathbf{No}, \subseteq) is well-founded \longrightarrow inductive definitions.

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a _-minimum]

Well-founded order

For $a \in No$, we have two <u>sets</u> $a_L := \{b \in No: b < a, b \subseteq a\}$ and $a_R := \{b \in No: b > a, b \subseteq a\}$.

So $a = \{a_L \mid a_R\}$. The partial order (**No**, \subseteq) is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a + b of numbers a, b:

Inductive hypothesis: $a_L + b$, $a + b_L$ and $a + b_R$, $a_R + b$ are defined.

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a _-minimum]

Well-founded order

For $a \in No$, we have two <u>sets</u> $a_L := \{b \in No: b < a, b \subseteq a\}$ and $a_R := \{b \in No: b > a, b \subseteq a\}$.

So $a = \{a_L \mid a_R\}$. The partial order (**No**, \subseteq) is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum *a* + *b* of numbers *a*, *b*:

By definition,	$a_L + b$,	$a + b_L$	and	$a + b_R$, $a_R + b$
	< <i>a</i>	< <i>b</i>		> <i>b</i> > <i>a</i>

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a _-minimum]

Well-founded order

For $a \in No$, we have two <u>sets</u> $a_L := \{b \in No: b < a, b \subseteq a\}$ and $a_R := \{b \in No: b > a, b \subseteq a\}$.

So $a = \{a_L \mid a_R\}$. The partial order (**No**, \subseteq) is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum *a* + *b* of numbers *a*, *b*:

We want $a_L + b, a + b_L \\ < a+b \\ < a+b \\ > a+b \\ >$

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a _-minimum]

Well-founded order

For $a \in No$, we have two <u>sets</u> $a_L := \{b \in No: b < a, b \subseteq a\}$ and $a_R := \{b \in No: b > a, b \subseteq a\}$.

So $a = \{a_L \mid a_R\}$. The partial order (**No**, \subseteq) is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a + b of numbers a, b. We thus set

 $a + b := \{a_L + b, a + b_L \mid a + b_R, a_R + b\}.$

Fundamental property of (No, <, ⊂)

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubset -minimal number $\{L \mid R\}$ with

 $L < \{L \mid R\} < R.$

Equivalently: [order saturation + any non-empty convex subclass has a -minimum]

Well-founded order

For $a \in No$, we have two <u>sets</u> $a_L := \{b \in No: b < a, b \subseteq a\}$ and $a_R := \{b \in No: b > a, b \subseteq a\}$.

So $a = \{a_L \mid a_R\}$. The partial order (**No**, \subseteq) is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a + b of numbers a, b. We have

$$a+b = \{a_L+b, a+b_L \mid a+b_R, a_R+b\}.$$

Similar equations exist for $-a, a b, a_b^{\prime}$.

III.3 - Valuation theory of No

Monomials [Conway - 1976]

For each $a \in \mathbf{No}^{\times}$, there is a simplest $\mathfrak{d}_a \in \mathbf{No}^{\times}$ with $v\mathfrak{d}_a = va$ (natural valuation). We set

Mo := $\{\mathfrak{d}_a : a \in \mathbf{No}^{\times}\} \subseteq \mathbf{No}^{>0}$: class of monomials

Mo is a subgroup of $(No^{>0}, \times)$ with a natural isomorphism $(\nu No^{\times}, <) \simeq (Mo, >)$.

III.3 - Valuation theory of No

Monomials [Conway - 1976]

For each $a \in \mathbf{No}^{\times}$, there is a simplest $\mathfrak{d}_a \in \mathbf{No}^{\times}$ with $v\mathfrak{d}_a = va$ (natural valuation). We set

 $Mo := \{ \mathfrak{d}_a : a \in No^{\times} \} \subseteq No^{>0} : class of monomials$

Mo is a subgroup of $(No^{>0}, \times)$ with a natural isomorphism $(\nu No^{\times}, <) \simeq (Mo, >)$.

(No, <) is saturated \rightarrow (No, +, ×, v) is spherically complete. If u is a pseudo-Cauchy sequence in No, then its convex class of pseudo-limits has a \subseteq -minimum simplim u.

III.3 - Valuation theory of No

Monomials [Conway - 1976]

For each $a \in \mathbf{No}^{\times}$, there is a simplest $\mathfrak{d}_a \in \mathbf{No}^{\times}$ with $v\mathfrak{d}_a = va$ (natural valuation). We set

 $Mo := \{ \mathfrak{d}_a : a \in No^{\times} \} \subseteq No^{>0} : class of monomials$

Mo is a subgroup of $(No^{>0}, \times)$ with a natural isomorphism $(\nu No^{\times}, <) \simeq (Mo, >)$.

(No, <) is saturated \rightarrow (No, +, ×, v) is spherically complete. If u is a pseudo-Cauchy sequence in No, then its convex class of pseudo-limits has a \sqsubseteq -minimum simplim u. For $f = \sum_{\gamma < \rho} f_{\gamma} \mathfrak{m}_{\gamma} \in \mathbb{R}[[\mathbf{Mo}]]$, define $\hat{f} \in \mathbf{No}$ by induction on $\rho \in \mathbf{On}$:

$$\hat{f} := \sum_{\gamma < \beta} \widehat{f_{\gamma} \mathfrak{m}_{\gamma}} + \widehat{f_{\beta} \mathfrak{m}_{\beta}} \quad \text{if } \rho = \beta + 1 \text{ is a successor ordinal, and}$$
$$\hat{f} := \operatorname{simplim}\left(\widehat{\sum_{\gamma < \sigma} \widehat{f_{\gamma} \mathfrak{m}_{\gamma}}}\right)_{\sigma < \rho} \quad \text{if } \rho \text{ is a limit ordinal.}$$

Then $\mathbb{R}[[\mathbf{Mo}]] \longrightarrow \mathbf{No}; f \mapsto \hat{f}$ is an isomorphism of ordered valued fields.

III.4 - Surreal exponentiation

Exponential [Gonshor - 1986]

For $a \in \mathbb{N}$ and $n \in \mathbb{N}$, set $[a]_n := \sum_{k \leq n} \frac{a^k}{k!}$. The function

$$\mathbf{E}_{1}(a) := \left\{ \mathbf{E}_{1}(a_{L}) \left[a - a_{L} \right]_{\mathbb{N}}, \mathbf{E}_{1}(a_{R}) \left[a - a_{R} \right]_{2\mathbb{N}+1} \middle| \frac{\mathbf{E}_{1}(a_{R})}{\left[a_{R} - a \right]_{2\mathbb{N}+1}}, \frac{\mathbf{E}_{1}(a_{L})}{\left[a_{L} - a \right]_{\mathbb{N}}} \right\}$$

is an isomorphism $(\mathbf{No}, +, <) \rightarrow (\mathbf{No}^{>0}, \times, <)$. Set $E_n = E_1^{\circ n}$ and $L_n = E_1^{\circ (-n)}$ for all $n \in \mathbb{N}$.

III.4 - Surreal exponentiation

Exponential [Gonshor - 1986]

For $a \in \mathbb{N}$ and $n \in \mathbb{N}$, set $[a]_n := \sum_{k \leq n} \frac{a^k}{k!}$. The function

$$\mathbf{E}_{1}(a) := \left\{ \mathbf{E}_{1}(a_{L}) \left[a - a_{L} \right]_{\mathbb{N}}, \mathbf{E}_{1}(a_{R}) \left[a - a_{R} \right]_{2\mathbb{N}+1} \middle| \frac{\mathbf{E}_{1}(a_{R})}{\left[a_{R} - a \right]_{2\mathbb{N}+1}}, \frac{\mathbf{E}_{1}(a_{L})}{\left[a_{L} - a \right]_{\mathbb{N}}} \right\}$$

is an isomorphism $(\mathbf{No}, +, <) \rightarrow (\mathbf{No}^{>0}, \times, <)$. Set $E_n = E_1^{\circ n}$ and $L_n = E_1^{\circ (-n)}$ for all $n \in \mathbb{N}$.

The exponential interacts with the structure of Hahn series field as follows:

$$\mathbf{Mo} = E_1(\mathbb{R}[[\mathbf{Mo}^{>1}]])$$

$$\forall \varepsilon \prec 1, E_1(\varepsilon) = \sum_{k \in \mathbb{N}} \frac{1}{k!} \varepsilon^k.$$

III.4 - Surreal exponentiation

Exponential [Gonshor - 1986]

For $a \in \mathbb{N}$ and $n \in \mathbb{N}$, set $[a]_n := \sum_{k \leq n} \frac{a^k}{k!}$. The function

$$\mathbf{E}_{1}(a) := \left\{ \mathbf{E}_{1}(a_{L}) \left[a - a_{L} \right]_{\mathbb{N}}, \, \mathbf{E}_{1}(a_{R}) \left[a - a_{R} \right]_{2\mathbb{N}+1} \middle| \frac{\mathbf{E}_{1}(a_{R})}{\left[a_{R} - a \right]_{2\mathbb{N}+1}}, \, \frac{\mathbf{E}_{1}(a_{L})}{\left[a_{L} - a \right]_{\mathbb{N}}} \right\}$$

is an isomorphism $(\mathbf{No}, +, <) \rightarrow (\mathbf{No}^{>0}, \times, <)$. Set $E_n = E_1^{\circ n}$ and $L_n = E_1^{\circ (-n)}$ for all $n \in \mathbb{N}$.

The exponential interacts with the structure of Hahn series field as follows:

$$\mathbf{Mo} = E_1(\mathbb{R}[[\mathbf{Mo}^{>1}]])$$

$$\forall \varepsilon \prec 1, E_1(\varepsilon) = \sum_{k \in \mathbb{N}} \frac{1}{k!} \varepsilon^k.$$

[Berarducci, S. Kuhlmann, Mantova and Matusinski - 2019]: How to use these properties to define more general exponential and logarithmic functions on fields of Hahn series.

III.5 - Transseries and cuts as numbers

[Berarducci, Mantova - 2017]: There is a unique embedding $\mathbb{T}_{\text{LE}} \longrightarrow \text{No}$ which commutes with transfinite sums and exponentials, and sends *x* to ω .

numbers as generalized transseries \rightarrow filling cuts c = (L, R) in \mathbb{T}_{LE} with numbers $\{L \mid R\}$?

III.5 - Transseries and cuts as numbers

[Berarducci, Mantova - 2017]: There is a unique embedding $\mathbb{T}_{\text{LE}} \longrightarrow \text{No}$ which commutes with transfinite sums and exponentials, and sends *x* to ω .

numbers as generalized transseries \rightarrow filling cuts c = (L, R) in \mathbb{T}_{LE} with numbers $\{L \mid R\}$?

Vertical cuts as numbers

We have $E_n(\omega) = \omega^{\dots}$ (*n* times) for all $n \in \mathbb{N}$. So the number

 $\varepsilon_0 = \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots \mid \emptyset\}$

is the simplest « transexponential » number. Candidate for e_{ω} in No?

III.5 - Transseries and cuts as numbers

[Berarducci, Mantova - 2017]: There is a unique embedding $\mathbb{T}_{\text{LE}} \longrightarrow \text{No}$ which commutes with transfinite sums and exponentials, and sends *x* to ω .

numbers as generalized transseries \rightarrow filling cuts c = (L, R) in \mathbb{T}_{LE} with numbers $\{L \mid R\}$?

Vertical cuts as numbers

We have $E_n(\omega) = \omega^{\dots}$ (*n* times) for all $n \in \mathbb{N}$. So the number

 $\mathcal{E}_0 = \{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \dots \mid \emptyset\}$

is the simplest « transexponential » number. Candidate for e_{ω} in **No**?

Nested cuts as numbers

*Candidate for f*₀*: the corresponding number*

$$\left\{\omega,\omega+\mathrm{e}^{\sqrt{\log\omega}},\omega+\mathrm{e}^{\sqrt{\log\omega}+\mathrm{e}^{\sqrt{\log\omega}}},\dots\ \left|\ \dots,\omega+\mathrm{e}^{\sqrt{\log\omega}+\mathrm{e}^{r\sqrt{\log\omega}}},\omega+\mathrm{e}^{r\sqrt{\log\omega}},r\omega:r>1\right\}.$$

Definition

A surreal substructure is a class $S \subseteq No$ such that (S, \leq, \subseteq) and (No, \leq, \subseteq) are isomorphic. There is a unique such isomorphism $\Xi_S : No \longrightarrow S$.

 \longrightarrow each $a \in S$ is determined by its « label » z in $a = \Xi_S(z)$.

Definition

A surreal substructure is a class $S \subseteq No$ such that (S, \leq, \equiv) and (No, \leq, \equiv) are isomorphic. There is a unique such isomorphism $\Xi_S : No \longrightarrow S$.

 \rightarrow each $a \in S$ is determined by its « label » z in $a = \Xi_S(z)$.

Numerous classes involved in the study of **No** are surreal substructures:

- The class $No^{\mathbb{R}}$ of positive infinite numbers.
- The class **No**[<] of infinitesimals.
- The class Mo of monomials.
- The class $\mathbb{R}[[\mathbf{Mo}^{>1}]] = L_1(\mathbf{Mo})$ of so-called purely infinite numbers.
- The class $\mathbf{Mo}_{\omega} = \bigcap_{n \in \mathbb{N}} E_n(\mathbf{Mo})$ of « log-atomic » numbers.

III.7 - Surreal hyperexponentiation (1)

The first hyperlogarithm $L_{\omega}: \mathbf{No}^{\mathbb{R}} \longrightarrow \mathbf{No}^{\mathbb{R}}$ can be defined using simple rules:

Defining L_{ω} on No [with van der Hoeven and Mantova]

• We must have
$$L'_{\omega} = \frac{1}{L_0 L_1 L_2 L_3 \cdots}$$
, so $L''_{\omega} = -\sum_{k \in \mathbb{N}} \frac{1}{L_k L_{k+1} \cdots}$, and so on...

24/28

III.7 - Surreal hyperexponentiation (1)

The first hyperlogarithm $L_{\omega}: \mathbf{No}^{\mathbb{R}} \longrightarrow \mathbf{No}^{\mathbb{R}}$ can be defined using simple rules:

Defining L_{ω} on No [with van der Hoeven and Mantova]

• We must have
$$L'_{\omega} = \frac{1}{L_0 L_1 L_2 L_3 \cdots}$$
, so $L''_{\omega} = -\sum_{k \in \mathbb{N}} \frac{1}{L_k L_{k+1} \cdots}$, and so on...

• Let $a \in \mathbf{No}^{\mathbb{R}}$. We assume that $L_{\omega}(a)$ is defined, and try to define $L_{\omega}(a + \varepsilon)$ for each $\varepsilon < 1$. The family $(L_{\omega}^{(k)}(a) \varepsilon^k)_{k>0}$ is summable. So we set

$$L_{\omega}(a+\varepsilon) := \sum_{k\geq 0} \frac{L_{\omega}^{(k)}(a)}{k!} \varepsilon^{k}.$$

III.7 - Surreal hyperexponentiation (1)

The first hyperlogarithm $L_{\omega}: \mathbf{No}^{\mathbb{R}} \longrightarrow \mathbf{No}^{\mathbb{R}}$ can be defined using simple rules:

Defining L_{ω} on No [with van der Hoeven and Mantova]

• We must have
$$L'_{\omega} = \frac{1}{L_0 L_1 L_2 L_3 \cdots}$$
, so $L''_{\omega} = -\sum_{k \in \mathbb{N}} \frac{1}{L_k L_{k+1} \cdots}$, and so on...

• Let $a \in \mathbf{No}^{\mathbb{R}}$. We assume that $L_{\omega}(a)$ is defined, and try to define $L_{\omega}(a + \varepsilon)$ for each $\varepsilon < 1$. The family $(L_{\omega}^{(k)}(a) \varepsilon^k)_{k>0}$ is summable. So we set

$$L_{\omega}(a+\varepsilon) := \sum_{k\geq 0} \frac{L_{\omega}^{(k)}(a)}{k!} \varepsilon^{k}.$$

Define L_{ω} on a class **S** with $\forall b \in \mathbf{No}^{\mathbb{R}}$, $\exists n \in \mathbb{N}$, $L_n(b) =: a + \varepsilon \in \mathbf{S} + \mathbf{No}^{<1}$. Then

$$L_{\omega}(b) = L_{\omega}(E_n(a+\varepsilon)) \underset{\text{Abel eq}}{=} n + L_{\omega}(a+\varepsilon) = n + \sum_{k=0}^{+\infty} \frac{L_{\omega}^{(k)}(a)}{k!} \varepsilon^k.$$

24/28

III.8 - Surreal hyperexponentiation (2)

The class Mo_{ω} of log-atomic numbers satisfies the previous conditions. For $a, b \in No^{\mathbb{R}}$ with a < b, we require

 $L_{\omega}(a) < L_n(a)$ and $L_{\omega}(a) < L_{\omega}(b),$

which calls for the following inductive definition of L_{ω} :

III.8 - Surreal hyperexponentiation (2)

The class Mo_{ω} of log-atomic numbers satisfies the previous conditions. For $a, b \in No^{\mathbb{R}}$ with a < b, we require

 $L_{\omega}(a) < L_n(a)$ and $L_{\omega}(a) < L_{\omega}(b),$

which calls for the following inductive definition of L_{ω} :

$$\forall \mathfrak{a} \in \mathbf{Mo}_{\omega}, \widecheck{L_{\omega}}(\mathfrak{a}) := \left\{ \widecheck{L_{\omega}}(\mathfrak{a}') + \frac{1}{L_{n}(\mathfrak{a}')} \middle| \widecheck{L_{\omega}}(\mathfrak{a}'') - \frac{1}{L_{n}(\mathfrak{a}'')}, L_{n}(\mathfrak{a}) \right\},$$

for generic $\mathfrak{a}', \mathfrak{a}''$ with $\mathfrak{a}', \mathfrak{a}'' \in \mathbf{Mo}_{\omega}, \mathfrak{a}', \mathfrak{a}'' \subseteq \mathfrak{a}, \mathfrak{a}' < \mathfrak{a} < \mathfrak{a}''$ and $n \in \mathbb{N}$.

III.8 - Surreal hyperexponentiation (2)

The class Mo_{ω} of log-atomic numbers satisfies the previous conditions. For $a, b \in No^{\mathbb{R}}$ with a < b, we require

 $L_{\omega}(a) < L_n(a)$ and $L_{\omega}(a) < L_{\omega}(b),$

which calls for the following inductive definition of L_{ω} :

$$\forall \mathfrak{a} \in \mathbf{Mo}_{\omega}, \widecheck{L_{\omega}}(\mathfrak{a}) := \left\{ \widecheck{L_{\omega}}(\mathfrak{a}') + \frac{1}{L_{n}(\mathfrak{a}')} \middle| \widecheck{L_{\omega}}(\mathfrak{a}'') - \frac{1}{L_{n}(\mathfrak{a}'')}, L_{n}(\mathfrak{a}) \right\},$$

for generic $\mathfrak{a}', \mathfrak{a}'' \text{ with } \mathfrak{a}', \mathfrak{a}'' \in \mathbf{Mo}_{\omega}, \mathfrak{a}', \mathfrak{a}'' \subseteq \mathfrak{a}, \mathfrak{a}' < \mathfrak{a} < \mathfrak{a}''$ and $n \in \mathbb{N}$.

Theorem

This generalizes to $L_{\omega^{\mu}}$ for each $\mu \in \mathbf{On}$. We obtain a composition law

$$\circ: \mathbb{\tilde{L}} \times \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}. \quad (\mathbb{\tilde{L}} \subsetneq \mathbf{No})$$

III.9 - Hyperserial expansions

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{Mo}^{\neq 1}$, there are $\alpha, \beta \in \mathbf{On}$, $u, \psi \in \mathbf{No}$, $\iota \in \{-1, 1\}$ such that \mathfrak{m} expands uniquely as

 $\mathfrak{m} = \mathrm{e}^{\psi} (L_{\beta} E_{\alpha}^{u})^{\iota} \qquad (= \exp(\psi) \times (L_{\beta}(E_{\alpha}(u)))^{\iota}).$

III.9 - Hyperserial expansions

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{Mo}^{\neq 1}$, there are $\alpha, \beta \in \mathbf{On}$, $u, \psi \in \mathbf{No}$, $\iota \in \{-1, 1\}$ such that \mathfrak{m} expands uniquely as

$$\mathfrak{m} = \mathrm{e}^{\psi} (L_{\beta} E_{\alpha}^{u})^{\iota} \qquad (= \exp(\psi) \times (L_{\beta}(E_{\alpha}(u)))^{\iota}).$$

Constructing paths in numbers

Fix $a_0 \in \mathbf{No}^{\times}$. At each stage *i*, pick a term $r_i \mathfrak{m}_i$ in a_i seen as a Hahn series, and expand it as

$$r_i\mathfrak{m}_i = r_i \mathrm{e}^{\psi_i} (L_{\beta_i} E_{\alpha_i}^{u_i})^{\iota_i}.$$

Then choose $a_{i+1} \in \{\psi_i, u_i\}$ with the restrictions

$$(\psi_i = 0 \implies a_i \neq \psi_i)$$
 and $(E_{\alpha_i}^{u_i} = \omega \implies a_i \neq u_i)$

This defines a **path** $(\mathfrak{m}_i)_{i < \ell}$, $\ell \leq \omega$ in a_0 ($\ell < \omega$ if and only if $\mathfrak{m}_i = (L_{\beta_i}(\omega))^{\iota_i}$ for some *i*).

III.9 - Hyperserial expansions

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{Mo}^{\neq 1}$, there are $\alpha, \beta \in \mathbf{On}, u, \psi \in \mathbf{No}, \iota \in \{-1, 1\}$ such that \mathfrak{m} expands uniquely as

$$\mathfrak{m} = \mathrm{e}^{\psi} (L_{\beta} E_{\alpha}^{u})^{\iota} \qquad (= \exp(\psi) \times (L_{\beta}(E_{\alpha}(u)))^{\iota}).$$

Constructing paths in numbers

Fix $a_0 \in \mathbf{No}^*$. At each stage *i*, pick a term $r_i \mathfrak{m}_i$ in a_i seen as a Hahn series, and expand it as

$$r_i\mathfrak{m}_i = \pm \mathrm{e}^{\psi_i}(L_{\mu}E^{u_i}_{\alpha_i})^{\iota_i}.$$

Then choose $a_{i+1} \in \{\psi_i, u_i\}$ with the restrictions

$$(\psi_i = 0 \implies a_i \neq \psi_i)$$
 and $(E_{\alpha_i}^{u_i} = \omega \implies a_i \neq u_i)$

This defines a **path** $(\mathfrak{m}_i)_{i < \ell}$ in a_0 . It is **well-nested** if for large enough *i*, we have

 $\beta_i = 0$, $\mathfrak{m}_{i+1} \notin \operatorname{supp} \psi_i$, $\mathfrak{m}_{i+1} = \operatorname{min} \operatorname{supp} u_i$, and $r_i \in \{-1, 1\}$.

Describing numbers as hyperseries

A) existence of infinite paths \rightarrow yes, e.g. there are numbers $a_0 \in No$ which expand as

$$a_0 = \omega + E_1^{\sqrt{L_1(\omega)} + e^{\sqrt{L_2(\omega)}}} E_{\omega}^{\sqrt{L_{\omega}(\omega)} + e^{\sqrt{L_{\omega^2}(\omega)}}} E_{\omega^2}^{\sqrt{L_{\omega^2}(\omega)}}$$

B) structure of infinite paths

C) multiplicity of numbers with a given expansion

Describing numbers as hyperseries

A) existence of infinite paths

B) structure of infinite paths \rightarrow well-nested paths

C) multiplicity of numbers with a given expansion

Describing numbers as hyperseries

A) existence of infinite paths

B) structure of infinite paths

C) mutiplicity of numbers with a given expansion \rightarrow by B), infinite expansions end up as

$$a_{i} = \varphi_{i} \pm e^{\psi_{i}} \left(E_{\alpha_{i}}^{\varphi_{i+1} \pm (E_{\alpha_{i+1}}^{\varphi_{i+1}})^{\iota_{i+1}}} \right)^{\iota_{i}}, \text{ for large enough } i, \text{ for some } \varphi_{i} \text{ 's}$$

Theorem: For large enough *i*, numbers which expand as a_i form a surreal substructure.

Describing numbers as hyperseries

A) existence of infinite paths \rightarrow yes

B) structure of infinite paths \rightarrow well-nested paths

C) mutiplicity of numbers with a given expansion? \rightarrow ultimately $\simeq No$

Theorem

Using this description of paths, one can represent any surreal number *a* as a tree labelled by real and ordinal numbers

Thank you!