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O-minimal germs 2/10

M=(M;<; : : : ) o-minimal structure M1 := fgerms at +1 of def. maps M!M g

If M has definable Skolem functions, then M4M1.

Furthermore the subset

GM :=
n
f 2M1 : lim

+1
f =+1

o
is a totally (right-,left-)ordered group under composition. We focus on this Log-structure.

Can one understand Th(GM; �; <)?
Main question

For any ordered group (G; �; 1; <), the structure M := (G;<; 1; (h 7! g h)g2G) is o-minimal
and GM'G.

Answer: No

What if M expands a real closed field?
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Equations over ordered groups 3/10

Given an ordered group (G ; �;1;<) and a formula '(g; y) with parameters g=(g1; : : : ; gn)2G,
when is there an extension G��G that satisfies 9y ('(g; y)) ?

Problem: this turns out to be a very difficult question. It entails for instance matters of

divisibility g y¡�=1
conjugacy g1 y g2

¡1 y¡1=1
general functional inequalities g1 y

�1 � � � gn y�n> 1.

Analogy with real closed valued fields, or so-called H-closed fields (e.g. transseries): the formula

9y (t(a; y)> 1) (for a term t(x; y) in the language)

could be translated into:

� semialgebraic relations on definable quotients with poorer structure (e.g. the residue field
and value group, the residue field and the asymptotic couple)

� completeness conditions (e.g. spherical completeness)

Is there a valuation theory on ordered groups GM coming from o-minimal fields?
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Growth properties 4/10

Growth. Let M=(M;+; �; 0; 1; <; : : : ) be o-minimal. Let f ; g 2GM. When is

f � g > g � f ? (1)

� f cannot lie in the centraliser C(g) of g in GM

� (1) should hold for sufficiently large f .

Valuation. The map v : g 7!ConvexHull(C(g)) should be a measure of the size of elements in G.

Asymptotic expansions. Elements f 2HM can have asymptotic expansions

f � r0m0+ � � �+ rimi+ � � �

where ri2R� and m0�m1� � � � lie in a section of the natural valuation.
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f � g > g � f ? (2)
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Growth properties 4/10

Growth. Let M=(M;+; �; 0; 1; <; : : : ) be o-minimal. Let f ; g 2GM. When is

f � g > g � f ? (3)

� f cannot lie in the centraliser C(g) of g in GM

� (3) should hold for sufficiently large f .

Valuation. The map v : g 7!ConvexHull(C(g)) should be a measure of the size of elements in G.

Asymptotic expansions. Likewise, elements f 2 GM ought to have asymptotic expansions

f � 𝓈0
[r0] � � � � � 𝓈i

[ri] � � � �

where ri2R�, 𝓈i
[ri]2C(𝓈i) and v(𝓈0)<v(𝓈1)< � � �.



Growth axioms 5/10

A growth order group is an ordered group (G ; �; 1; <) satisfying the following Log-sentences:

If f ; g > 1 and f > C(g), then f g > g f.

Ax. 1

Convex hulls of centralisers in G are linearly ordered by inclusion.
Ax. 2

An element 𝓈2 G>1 is scaling if C(𝓈) is Abelian, and for all f 2 G with v(f) = v(𝓈), there is
an 𝓈02C(𝓈) with v(f 𝓈0

¡1)<v(f).

For all f 2G n f1g, there is a scaling element 𝓈 with v(f)= v(𝓈).
Ax. 3

Suppose G is a GOG. For f 2 G n f1g, the group C(f) is Abelian.
Proposition

For any section 𝓈 of v : G ¡! v(G) ranging in scaling elements, the family (C(𝓈(�)))�2v(G) is a
functorial construction.
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Examples 6/10

k: ordered field; G: ordered vector space over k; M := (G;+; 0; <; (g 7! c g)c2k)

Then M is o-minimal, and has QE and a universal axiomatisation. So GM is the group
Affk

+(G)' k>0nG of strictly increasing affine maps G!G. This is a GOG whose value
(ordered) set fv(f) : f 2GMg is 2.

Strictly increasing affine maps

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Let M be an o-minimal expansion of the real ordered field. Suppose that each germ in GM
has a level, i.e.

8f 2 GM;9e2Z;9n2N; jlogn � f � expn¡ expej6 1:

Then GM is a growth order groups whose centralisers are Archimedean.

Theorem 1

Other examples include groups of formal series (e.g. transseries) under formal composition.

Question: do growth order groups always act on ordered differential fields?
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Asymptotic expansions 7/10

Three routes in order to make sense of non-commutative asymptotic expansions:

A) Construct ordered groups of formal non-commutative �asymptotic expansions�.

B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.

C) Propose an axiomatic framework for ordered infinite products in groups.
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A)

! Given a linearly ordered family (Cs)s2V of ordered Abelian groups, defining group laws on
the Hahn product

Q
s2V Cs is involved from an algebraic standpoint.

It entails more information than just the family (Cs)s2V and also entails making choices.

B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.

C) Propose an axiomatic framework for ordered infinite products in groups.
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Three routes in order to make sense of non-commutative asymptotic expansions:

A) construct ordered groups of formal non-commutative �asymptotic expansions�.

B)

! This entails solving inequalities t(g; y)> 1 over ordered groups, and even those which do
not require new valuations are difficult to study.

C) propose an axiomatic framework for ordered infinite products in groups.



Asymptotic expansions 7/10

Three routes in order to make sense of non-commutative asymptotic expansions:

A) Construct ordered groups of formal non-commutative �asymptotic expansions�.

B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.

C)



Multipliability groups 8/10

A multipliability group is a group (G ; �; 1) together with a family of partial functions

�(I ;<) : GI¡!G

for all linearly ordered sets (I ;<), extending the finite products: if i1< � � �<in, then

�(fi1; : : : ;ing;<) g= g(i1) � � � g(in):

There is a practical formalism of such products.

M: ordered monoid / k: ordered field. The group of k-valued series with well-partially ordered
supports �M that are tangent to the identity is a multipliability group in a natural way.

Theorem 2

The group of positive infinite transseries has a natural structure of multipliability group. More-
over, each transseries f can be expressed uniquely as an infinite product

f =(ex)[n0] � 𝓈1
[r1] � � � � � 𝓈

[r] � � � �  <�2On

for a fixed section of the valuation �𝓈0; 𝓈1; : : : , for n02Z and r1; : : : ; r ; : : : 2R�.

Work in progress
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The nearly Abelian case 9/10

A growth order group G is said nearly Abelian if for all f ; g 2G n f1g, we have

v([f ; g])<v(f) and v([f ; g])<v(g):

If M is a polynomially bounded o-minimal expansion of the real ordered field, then the group
fid+ � : lim+1 �2Rg�GM is nearly Abelian. On the contrary Affk

+(G) is not nearly Abelian.

Suppose further that each centraliser in G is divisible and that valuative balls have the inter-
section property. Then each function

G ¡!G ; f 7! g1 f
�1 � � � gn f�n

for n> 0 and �1+ � � �+�n2Z n f0g is bijective and strictly monotonous.

Work in progress

Under a more precise assumption on the map (f ; g) 7! v([f ; g]), we obtain:

There is an extension of G whose valuative balls have the intersection property.

Work in progress

Future work: eliminating quantifiers in an extended language.
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