Ordered groups of regular growth rates

by Vincent Bagayoko

IMJ-PRG, Paris

 $\mathcal{M} = (M, <, \dots)$ o-minimal structure $\mathcal{M}_{\infty} := \{ \text{germs at } +\infty \text{ of def. maps } M \to M \}$

 $\mathcal{M} = (M, <, \dots) \text{ o-minimal structure} \qquad \mathcal{M}_{\infty} := \{\text{germs at } +\infty \text{ of def. maps } M \to M \}$ If \mathcal{M} has definable Skolem functions, then $\mathcal{M} \preccurlyeq \mathcal{M}_{\infty}$.

 $\mathcal{M} = (M, <, \dots) \text{ o-minimal structure} \qquad \mathcal{M}_{\infty} := \{\text{germs at } +\infty \text{ of def. maps } M \to M \}$ If \mathcal{M} has definable Skolem functions, then $\mathcal{M} \preccurlyeq \mathcal{M}_{\infty}$.

Furthermore the subset

$$\mathcal{G}_{\mathcal{M}} := \left\{ f \in \mathcal{M}_{\infty} : \lim_{+\infty} f = +\infty \right\}$$

is a totally (right-,left-)ordered group under composition. We focus on this \mathcal{L}_{og} -structure.

 $\mathcal{M} = (M, <, \dots) \text{ o-minimal structure} \qquad \mathcal{M}_{\infty} := \{\text{germs at } +\infty \text{ of def. maps } M \to M \}$ If \mathcal{M} has definable Skolem functions, then $\mathcal{M} \preccurlyeq \mathcal{M}_{\infty}$.

Furthermore the subset

$$\mathcal{G}_{\mathcal{M}} := \left\{ f \in \mathcal{M}_{\infty} : \lim_{+\infty} f = +\infty \right\}$$

is a totally (right-,left-)ordered group under composition. We focus on this \mathcal{L}_{og} -structure.

Main question

Can one understand $Th(\mathcal{G}_{\mathcal{M}}, \circ, <)$?

 $\mathcal{M} = (M, <, \dots) \text{ o-minimal structure} \qquad \mathcal{M}_{\infty} := \{\text{germs at } +\infty \text{ of def. maps } M \to M \}$ If \mathcal{M} has definable Skolem functions, then $\mathcal{M} \preccurlyeq \mathcal{M}_{\infty}$.

Furthermore the subset

$$\mathcal{G}_{\mathcal{M}} := \left\{ f \in \mathcal{M}_{\infty} : \lim_{+\infty} f = +\infty \right\}$$

is a totally (right-,left-)ordered group under composition. We focus on this \mathcal{L}_{og} -structure.

Main question

Can one understand $Th(\mathcal{G}_{\mathcal{M}}, \circ, <)$?

Answer: No

For any ordered group $(G, \cdot, 1, <)$, the structure $\mathcal{M} := (G, <, 1, (h \mapsto g h)_{g \in G})$ is o-minimal and $\mathcal{G}_{\mathcal{M}} \simeq G$.

 $\mathcal{M} = (M, <, \dots) \text{ o-minimal structure} \qquad \mathcal{M}_{\infty} := \{\text{germs at } +\infty \text{ of def. maps } M \to M \}$ If \mathcal{M} has definable Skolem functions, then $\mathcal{M} \preccurlyeq \mathcal{M}_{\infty}$.

Furthermore the subset

$$\mathcal{G}_{\mathcal{M}} := \left\{ f \in \mathcal{M}_{\infty} : \lim_{+\infty} f = +\infty \right\}$$

is a totally (right-,left-)ordered group under composition. We focus on this \mathcal{L}_{og} -structure.

Main question

Can one understand $Th(\mathcal{G}_{\mathcal{M}}, \circ, <)$?

Answer: No

For any ordered group $(G, \cdot, 1, <)$, the structure $\mathcal{M} := (G, <, 1, (h \mapsto g h)_{g \in G})$ is o-minimal and $\mathcal{G}_{\mathcal{M}} \simeq G$.

What if ${\mathcal M}$ expands a real closed field?

Equations over ordered groups

Given an ordered group $(\mathcal{G}, \cdot, 1, <)$ and a formula $\varphi(\overline{g}, \overline{y})$ with parameters $\overline{g} = (g_1, \ldots, g_n) \in \mathcal{G}$, when is there an extension $\mathcal{G}^* \supseteq \mathcal{G}$ that satisfies $\exists \overline{y} (\varphi(\overline{g}, \overline{y}))$?

Equations over ordered groups

Given an ordered group $(\mathcal{G}, \cdot, 1, <)$ and a formula $\varphi(\overline{g}, \overline{y})$ with parameters $\overline{g} = (g_1, \ldots, g_n) \in \mathcal{G}$, when is there an extension $\mathcal{G}^* \supseteq \mathcal{G}$ that satisfies $\exists \overline{y} (\varphi(\overline{g}, \overline{y}))$?

Problem: this turns out to be a very difficult question. It entails for instance matters of

divisibility	$g y^{-\alpha} = 1$
conjugacy	$g_1 y g_2^{-1} y^{-1} = 1$
general functional inequalities	$g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \ge 1.$

Equations over ordered groups

Given an ordered group $(\mathcal{G}, \cdot, 1, <)$ and a formula $\varphi(\overline{g}, \overline{y})$ with parameters $\overline{g} = (g_1, \dots, g_n) \in \mathcal{G}$, when is there an extension $\mathcal{G}^* \supseteq \mathcal{G}$ that satisfies $\exists \overline{y} (\varphi(\overline{g}, \overline{y}))$?

Problem: this turns out to be a very difficult question. It entails for instance matters of

divisibility	$g y^{-\alpha} = 1$
conjugacy	$g_1 y g_2^{-1} y^{-1} = 1$
general functional inequalities	$g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \ge 1.$

Analogy with real closed valued fields, or so-called H-closed fields (e.g. transseries): the formula

 $\exists \overline{y} (t(\overline{a}, \overline{y}) \ge 1) \qquad \text{(for a term } t(\overline{x}, \overline{y}) \text{ in the language)}$

could be translated into:

- semialgebraic relations on definable quotients with poorer structure (e.g. the residue field and value group, the residue field and the asymptotic couple)
- completeness conditions (e.g. spherical completeness)

Is there a valuation theory on ordered groups $\mathcal{G}_{\mathcal{M}}$ coming from o-minimal fields?

Growth properties

Growth. Let $\mathcal{M} = (M, +, \cdot, 0, 1, <, \dots)$ be o-minimal. Let $f, g \in \mathcal{G}_{\mathcal{M}}$. When is

$$f \circ g > g \circ f ? \tag{1}$$

- f cannot lie in the centraliser $\mathcal{C}(g)$ of g in $\mathcal{G}_{\mathcal{M}}$
- (1) should hold for sufficiently large f.

Growth properties

Growth. Let $\mathcal{M} = (M, +, \cdot, 0, 1, <, \dots)$ be o-minimal. Let $f, g \in \mathcal{G}_{\mathcal{M}}$. When is

$$f \circ g > g \circ f ? \tag{2}$$

- f cannot lie in the centraliser $\mathcal{C}(g)$ of g in $\mathcal{G}_{\mathcal{M}}$
- (2) should hold for sufficiently large f.

Valuation. The map $v: g \mapsto \text{ConvexHull}(\mathcal{C}(g))$ should be a measure of the size of elements in \mathcal{G} .

Asymptotic expansions. Elements $f \in \mathcal{H}_{\mathcal{M}}$ can have asymptotic expansions

 $f \approx r_0 \mathfrak{m}_0 + \cdots + r_i \mathfrak{m}_i + \cdots$

where $r_i \in \mathbb{R}^{\times}$ and $\mathfrak{m}_0 \gg \mathfrak{m}_1 \gg \cdots$ lie in a section of the natural valuation.

Growth properties

Growth. Let $\mathcal{M} = (M, +, \cdot, 0, 1, <, ...)$ be o-minimal. Let $f, g \in \mathcal{G}_{\mathcal{M}}$. When is

$$f \circ g > g \circ f ? \tag{3}$$

- f cannot lie in the centraliser $\mathcal{C}(g)$ of g in $\mathcal{G}_{\mathcal{M}}$
- (3) should hold for sufficiently large f.

Valuation. The map $v: g \mapsto \text{ConvexHull}(\mathcal{C}(g))$ should be a measure of the size of elements in \mathcal{G} .

Asymptotic expansions. Likewise, elements $f \in \mathcal{G}_{\mathcal{M}}$ ought to have asymptotic expansions

 $f \approx \mathcal{I}_0^{[r_0]} \circ \cdots \circ \mathcal{I}_i^{[r_i]} \circ \cdots$

where $r_i \in \mathbb{R}^{\times}$, $s_i^{[r_i]} \in \mathcal{C}(s_i)$ and $v(s_0) < v(s_1) < \cdots$.

A growth order group is an ordered group $(\mathcal{G},\cdot,1,<)$ satisfying the following \mathcal{L}_{og} -sentences:

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ satisfying the following \mathcal{L}_{og} -sentences:

Ax. 1

If f, g > 1 and f > C(g), then fg > gf.

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ satisfying the following \mathcal{L}_{og} -sentences:

Ax. 1

If f, g > 1 and f > C(g), then fg > gf.

Ax. 2

Convex hulls of centralisers in \mathcal{G} are linearly ordered by inclusion.

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ satisfying the following \mathcal{L}_{og} -sentences:

Ax. 1

If f, g > 1 and f > C(g), then fg > gf.

Ax. 2

Convex hulls of centralisers in \mathcal{G} are linearly ordered by inclusion.

An element $s \in \mathcal{G}^{>1}$ is scaling if $\mathcal{C}(s)$ is Abelian, and for all $f \in \mathcal{G}$ with v(f) = v(s), there is an $s_0 \in \mathcal{C}(s)$ with $v(f s_0^{-1}) < v(f)$.

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ satisfying the following \mathcal{L}_{og} -sentences:

Ax. 1

If f, g > 1 and f > C(g), then fg > gf.

Ax. 2

Convex hulls of centralisers in \mathcal{G} are linearly ordered by inclusion.

An element $s \in \mathcal{G}^{>1}$ is scaling if $\mathcal{C}(s)$ is Abelian, and for all $f \in \mathcal{G}$ with v(f) = v(s), there is an $s_0 \in \mathcal{C}(s)$ with $v(f s_0^{-1}) < v(f)$.

Ax. 3

For all $f \in \mathcal{G} \setminus \{1\}$, there is a scaling element s with v(f) = v(s).

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ satisfying the following \mathcal{L}_{og} -sentences:

Ax. 1

If f, g > 1 and f > C(g), then fg > gf.

Ax. 2

Convex hulls of centralisers in \mathcal{G} are linearly ordered by inclusion.

An element $s \in \mathcal{G}^{>1}$ is scaling if $\mathcal{C}(s)$ is Abelian, and for all $f \in \mathcal{G}$ with v(f) = v(s), there is an $s_0 \in \mathcal{C}(s)$ with $v(f s_0^{-1}) < v(f)$.

Ax. 3

For all $f \in \mathcal{G} \setminus \{1\}$, there is a scaling element s with v(f) = v(s).

Proposition

Suppose \mathcal{G} is a GOG. For $f \in \mathcal{G} \setminus \{1\}$, the group $\mathcal{C}(f)$ is Abelian.

A growth order group is an ordered group $(\mathcal{G}, \cdot, 1, <)$ satisfying the following \mathcal{L}_{og} -sentences:

Ax. 1

If f, g > 1 and f > C(g), then fg > gf.

Ax. 2

Convex hulls of centralisers in \mathcal{G} are linearly ordered by inclusion.

An element $s \in \mathcal{G}^{>1}$ is scaling if $\mathcal{C}(s)$ is Abelian, and for all $f \in \mathcal{G}$ with v(f) = v(s), there is an $s_0 \in \mathcal{C}(s)$ with $v(f s_0^{-1}) < v(f)$.

Ax. 3

For all $f \in \mathcal{G} \setminus \{1\}$, there is a scaling element s with v(f) = v(s).

Proposition

Suppose \mathcal{G} is a GOG. For $f \in \mathcal{G} \setminus \{1\}$, the group $\mathcal{C}(f)$ is Abelian.

For any section s of $v: \mathcal{G} \longrightarrow v(\mathcal{G})$ ranging in scaling elements, the family $(\mathcal{C}(s(\rho)))_{\rho \in v(\mathcal{G})}$ is a functorial construction.

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k;

$$\mathcal{M} := (G, +, 0, <, (g \mapsto c g)_{c \in k})$$

Then \mathcal{M} is o-minimal, and has QE and a universal axiomatisation. So $\mathcal{G}_{\mathcal{M}}$ is the group $\operatorname{Aff}_k^+(G) \simeq k^{>0} \ltimes G$ of strictly increasing affine maps $G \to G$. This is a GOG whose value (ordered) set $\{v(f) : f \in \mathcal{G}_{\mathcal{M}}\}$ is 2.

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k; \mathcal{M}

$$\mathcal{M} := (G, +, 0, <, (g \mapsto c g)_{c \in k})$$

Then \mathcal{M} is o-minimal, and has QE and a universal axiomatisation. So $\mathcal{G}_{\mathcal{M}}$ is the group $\operatorname{Aff}_k^+(G) \simeq k^{>0} \ltimes G$ of strictly increasing affine maps $G \to G$. This is a GOG whose value (ordered) set $\{v(f) : f \in \mathcal{G}_{\mathcal{M}}\}$ is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k;

 $\mathcal{M} := (G, +, 0, <, (g \mapsto c g)_{c \in k})$

Then \mathcal{M} is o-minimal, and has QE and a universal axiomatisation. So $\mathcal{G}_{\mathcal{M}}$ is the group $\operatorname{Aff}_k^+(G) \simeq k^{>0} \ltimes G$ of strictly increasing affine maps $G \to G$. This is a GOG whose value (ordered) set $\{v(f) : f \in \mathcal{G}_{\mathcal{M}}\}$ is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Theorem 1

Let \mathcal{M} be an o-minimal expansion of the real ordered field. Suppose that each germ in $\mathcal{G}_{\mathcal{M}}$ has a level, i.e.

$$\forall f \in \mathcal{G}_{\mathcal{M}}, \exists e \in \mathbb{Z}, \exists n \in \mathbb{N}, |\log_n \circ f \circ \exp_n - \exp_e| \leq 1.$$

Then $\mathcal{G}_{\mathcal{M}}$ is a growth order groups whose centralisers are Archimedean.

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k;

 $\mathcal{M} := (G, +, 0, <, (g \mapsto c g)_{c \in k})$

Then \mathcal{M} is o-minimal, and has QE and a universal axiomatisation. So $\mathcal{G}_{\mathcal{M}}$ is the group $\operatorname{Aff}_k^+(G) \simeq k^{>0} \ltimes G$ of strictly increasing affine maps $G \to G$. This is a GOG whose value (ordered) set $\{v(f) : f \in \mathcal{G}_{\mathcal{M}}\}$ is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Theorem 1

Let \mathcal{M} be an o-minimal expansion of the real ordered field. Suppose that each germ in $\mathcal{G}_{\mathcal{M}}$ has a level, i.e.

$$\forall f \in \mathcal{G}_{\mathcal{M}}, \exists e \in \mathbb{Z}, \exists n \in \mathbb{N}, |\log_n \circ f \circ \exp_n - \exp_e| \leq 1.$$

Then $\mathcal{G}_{\mathcal{M}}$ is a growth order groups whose centralisers are Archimedean.

Other examples include groups of formal series (e.g. transseries) under formal composition.

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k;

 $\mathcal{M} := (G, +, 0, <, (g \mapsto c g)_{c \in k})$

Then \mathcal{M} is o-minimal, and has QE and a universal axiomatisation. So $\mathcal{G}_{\mathcal{M}}$ is the group $\operatorname{Aff}_k^+(G) \simeq k^{>0} \ltimes G$ of strictly increasing affine maps $G \to G$. This is a GOG whose value (ordered) set $\{v(f) : f \in \mathcal{G}_{\mathcal{M}}\}$ is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Theorem 1

Let \mathcal{M} be an o-minimal expansion of the real ordered field. Suppose that each germ in $\mathcal{G}_{\mathcal{M}}$ has a level, i.e.

 $\forall f \in \mathcal{G}_{\mathcal{M}}, \exists e \in \mathbb{Z}, \exists n \in \mathbb{N}, |\log_n \circ f \circ \exp_n - \exp_e| \leq 1.$

Then $\mathcal{G}_{\mathcal{M}}$ is a growth order groups whose centralisers are Archimedean.

Other examples include groups of formal series (e.g. transseries) under formal composition.

Question: do growth order groups always act on ordered differential fields?

Three routes in order to make sense of non-commutative asymptotic expansions:

- A) Construct ordered groups of formal non-commutative "asymptotic expansions".
- B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.
- C) Propose an axiomatic framework for ordered infinite products in groups.

Asymptotic expansions

Three routes in order to make sense of non-commutative asymptotic expansions:

A) construct ordered groups of formal non-commutative "asymptotic expansions".

! Given a linearly ordered family $(\mathcal{C}_s)_{s \in \mathcal{V}}$ of ordered Abelian groups, defining group laws on the Hahn product $\prod_{s \in \mathcal{V}} \mathcal{C}_s$ is involved from an algebraic standpoint.

It entails more information than just the family $(C_s)_{s \in V}$ and also entails making choices.

B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.

C) Propose an axiomatic framework for ordered infinite products in groups.

Asymptotic expansions

Three routes in order to make sense of non-commutative asymptotic expansions:

A) construct ordered groups of formal non-commutative "asymptotic expansions".

B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.

! This entails solving inequalities $t(\overline{g}, y) \ge 1$ over ordered groups, and even those which do not require new valuations are difficult to study.

C) propose an axiomatic framework for ordered infinite products in groups.

Asymptotic expansions

Three routes in order to make sense of non-commutative asymptotic expansions:

- A) Construct ordered groups of formal non-commutative "asymptotic expansions".
- B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.
- C) Propose an axiomatic framework for ordered infinite products in groups.

A multipliability group is a group $(\mathcal{G}, \cdot, 1)$ together with a family of partial functions

 $\Pi_{(I,<)}: \mathcal{G}^I \longrightarrow \mathcal{G}$

for all linearly ordered sets (I,<) , extending the finite products: if $i_1 < \cdots < i_n$, then

 $\Pi_{(\{i_1,\ldots,i_n\},<)} g = g(i_1)\cdots g(i_n).$

A multipliability group is a group $(\mathcal{G},\cdot,1)$ together with a family of partial functions

 $\Pi_{(I,<)}: \mathcal{G}^I \longrightarrow \mathcal{G}$

for all linearly ordered sets (I,<) , extending the finite products: if $i_1 < \cdots < i_n$, then

$$\Pi_{(\{i_1,\ldots,i_n\},<)} g = g(i_1)\cdots g(i_n).$$

There is a practical formalism of such products.

A multipliability group is a group $(\mathcal{G},\cdot,1)$ together with a family of partial functions

 $\Pi_{(I,<)}: \mathcal{G}^I \longrightarrow \mathcal{G}$

for all linearly ordered sets (I, <), extending the finite products: if $i_1 < \cdots < i_n$, then

$$\Pi_{(\{i_1,\ldots,i_n\},<)} g = g(i_1)\cdots g(i_n).$$

There is a practical formalism of such products.

Theorem 2

M: ordered monoid / k: ordered field. The group of k-valued series with well-partially ordered supports $\subseteq M$ that are tangent to the identity is a multipliability group in a natural way.

A multipliability group is a group $(\mathcal{G},\cdot,1)$ together with a family of partial functions

 $\Pi_{(I,<)}: \mathcal{G}^I \longrightarrow \mathcal{G}$

for all linearly ordered sets (I, <), extending the finite products: if $i_1 < \cdots < i_n$, then

$$\Pi_{(\{i_1,\ldots,i_n\},<)} g = g(i_1)\cdots g(i_n).$$

There is a practical formalism of such products.

Theorem 2

M: ordered monoid / k: ordered field. The group of k-valued series with well-partially ordered supports $\subseteq M$ that are tangent to the identity is a multipliability group in a natural way.

Work in progress

The group of positive infinite transseries has a natural structure of multipliability group. Moreover, each transseries f can be expressed uniquely as an infinite product

$$f = (\mathbf{e}^x)^{[n_0]} \circ \mathfrak{s}_1^{[r_1]} \circ \cdots \circ \mathfrak{s}_{\gamma}^{[r_{\gamma}]} \circ \cdots \qquad \gamma < \lambda \in \mathbf{On}$$

for a fixed section of the valuation $\supseteq s_0, s_1, \ldots$, for $n_0 \in \mathbb{Z}$ and $r_1, \ldots, r_{\gamma}, \ldots \in \mathbb{R}^{\times}$.

A growth order group G is said **nearly Abelian** if for all $f, g \in G \setminus \{1\}$, we have

 $v([f,g]) < v(f) \quad \text{and} \quad v([f,g]) < v(g).$

A growth order group G is said **nearly Abelian** if for all $f, g \in G \setminus \{1\}$, we have

 $v([f,g]) < v(f) \quad \text{and} \quad v([f,g]) < v(g).$

If \mathcal{M} is a polynomially bounded o-minimal expansion of the real ordered field, then the group $\{\mathrm{id} + \delta : \lim_{+\infty} \delta \in \mathbb{R}\} \subseteq \mathcal{G}_{\mathcal{M}}$ is nearly Abelian. On the contrary $\mathrm{Aff}_k^+(G)$ is not nearly Abelian.

A growth order group G is said **nearly Abelian** if for all $f, g \in G \setminus \{1\}$, we have

 $v([f,g]) < v(f) \quad \text{and} \quad v([f,g]) < v(g).$

If \mathcal{M} is a polynomially bounded o-minimal expansion of the real ordered field, then the group $\{\mathrm{id} + \delta : \lim_{+\infty} \delta \in \mathbb{R}\} \subseteq \mathcal{G}_{\mathcal{M}}$ is nearly Abelian. On the contrary $\mathrm{Aff}_k^+(G)$ is not nearly Abelian.

Work in progress

Suppose further that each centraliser in \mathcal{G} is divisible and that valuative balls have the intersection property. Then each function

$$\mathcal{G} \longrightarrow \mathcal{G}; f \mapsto g_1 f^{\alpha_1} \cdots g_n f^{\alpha_n}$$

for n > 0 and $\alpha_1 + \cdots + \alpha_n \in \mathbb{Z} \setminus \{0\}$ is bijective and strictly monotonous.

A growth order group G is said **nearly Abelian** if for all $f, g \in G \setminus \{1\}$, we have

 $v([f,g]) < v(f) \quad \text{and} \quad v([f,g]) < v(g).$

If \mathcal{M} is a polynomially bounded o-minimal expansion of the real ordered field, then the group $\{\mathrm{id} + \delta : \lim_{+\infty} \delta \in \mathbb{R}\} \subseteq \mathcal{G}_{\mathcal{M}}$ is nearly Abelian. On the contrary $\mathrm{Aff}_k^+(G)$ is not nearly Abelian.

Work in progress

Suppose further that each centraliser in \mathcal{G} is divisible and that valuative balls have the intersection property. Then each function

$$\mathcal{G} \longrightarrow \mathcal{G}; f \mapsto g_1 f^{\alpha_1} \cdots g_n f^{\alpha_n}$$

for n > 0 and $\alpha_1 + \cdots + \alpha_n \in \mathbb{Z} \setminus \{0\}$ is bijective and strictly monotonous.

Work in progress

Under a more precise assumption on the map $(f,g) \mapsto v([f,g])$, we obtain:

There is an extension of \mathcal{G} whose valuative balls have the intersection property.

A growth order group G is said **nearly Abelian** if for all $f, g \in G \setminus \{1\}$, we have

 $v([f,g]) < v(f) \quad \text{and} \quad v([f,g]) < v(g).$

If \mathcal{M} is a polynomially bounded o-minimal expansion of the real ordered field, then the group $\{\mathrm{id} + \delta : \lim_{+\infty} \delta \in \mathbb{R}\} \subseteq \mathcal{G}_{\mathcal{M}}$ is nearly Abelian. On the contrary $\mathrm{Aff}_k^+(G)$ is not nearly Abelian.

Work in progress

Suppose further that each centraliser in \mathcal{G} is divisible and that valuative balls have the intersection property. Then each function

$$\mathcal{G} \longrightarrow \mathcal{G}; f \mapsto g_1 f^{\alpha_1} \cdots g_n f^{\alpha_n}$$

for n > 0 and $\alpha_1 + \cdots + \alpha_n \in \mathbb{Z} \setminus \{0\}$ is bijective and strictly monotonous.

Work in progress

Under a more precise assumption on the map $(f,g) \mapsto v([f,g])$, we obtain:

There is an extension of \mathcal{G} whose valuative balls have the intersection property.

Future work: eliminating quantifiers in an extended language.

Thanks!