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M= (M,<,...) o-minimal structure Mo :={germs at o0 of def. maps M — M }
If M has definable Skolem functions, then M < M ..

Furthermore the subset

gM;:{feMoozligf:mo}

is a totally (right-,left-)ordered group under composition. We focus on this Le-structure.

Can one understand Th(Gxy, 0, <)?

For any ordered group (G, -,1, <), the structure M := (G, <,1,(h+— gh)sec) is o-minimal
and Gy ~G.

What if M expands a real closed field?
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Given an ordered group (G, -, 1, <) and a formula ¢(g, y) with parameters §=(g1,..., gn) €3,
when is there an extension G* O G that satisfies 97 (©(7, 7)) ?

Problem: this turns out to be a very difficult question. It entails for instance matters of

divisibility gy *=1

conjugacy g1ygy y =1
general functional inequalities | g1 y** -+ g, y®" > 1.

Analogy with real closed valued fields, or so-called H-closed fields (e.g. transseries): the formula
dy(t(a,y)=>1) (for a term (7, y) in the language)

could be translated into:

e semialgebraic relations on definable quotients with poorer structure (e.g. the residue field
and value group, the residue field and the asymptotic couple)

e completeness conditions (e.g. spherical completeness)

Is there a valuation theory on ordered groups Gaq coming from o-minimal fields?
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Growth. Let M= (M ,+,-,0,1,<,...) be o-minimal. Let f, g € Gr. When is

fog>gof? (3)

e f cannot lie in the centraliser C(g) of g in Gy

e (3) should hold for sufficiently large f.
Valuation. The map v: g+— ConvexHull(C(g)) should be a measure of the size of elements in .

Asymptotic expansions. Likewise, elements f € G ought to have asymptotic expansions
f%d([)TO]O---OdZ[m]O---

where 7, € R*, J,L[”] €C(3;) and v(dp) <v(g1) < ---.
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A growth order group is an ordered group (G, -, 1, <) satisfying the following Ls-sentences:

Ax. 1
If f,g>1and f>C(g), then fg>gf.

Ax. 2
Convex hulls of centralisers in G are linearly ordered by inclusion.

An element 5 € G~ is scaling if C(3) is Abelian, and for all f € G with v(f)=wv(3), there is
an 30 €C(s) with v(f a5 ") <v(f).

Ax. 3
For all f € G\ {1}, there is a scaling element 5 with v(f)=v(3).

Proposition
Suppose G is a GOG. For f € G\ {1}, the group C(f) is Abelian.

For any section 4 of v: G — v(G) ranging in scaling elements, the family (C(4(p))),cv(g) is a
functorial construction.



Examples

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k; M:=(G,+,0,<,(g—cg)ceck)

Then M is o-minimal, and has QE and a universal axiomatisation. So G, is the group
AfF(G) ~ k% x G of strictly increasing affine maps G — (. This is a GOG whose value
(ordered) set {v(f): f € G} is 2.



Examples

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k; M:=(G,+,0,<,(g—cg)ceck)

Then M is o-minimal, and has QE and a universal axiomatisation. So G, is the group

AfF(G) ~ k% x G of strictly increasing affine maps G — (. This is a GOG whose value
(ordered) set {v(f): f € G} is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.



Examples 6/10

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k; M:=(G,+,0,<,(g—cg)ceck)

Then M is o-minimal, and has QE and a universal axiomatisation. So G, is the group
AfF(G) ~ k% x G of strictly increasing affine maps G — (. This is a GOG whose value
(ordered) set {v(f): f € G} is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Let M be an o-minimal expansion of the real ordered field. Suppose that each germ in G,
has a level, i.e.

VfeGm,deeZ,IneN, |log, o foexp, —expe| < 1.

Then Gy is a growth order groups whose centralisers are Archimedean.



Examples 6/10

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k; M:=(G,+,0,<,(g—cg)ceck)

Then M is o-minimal, and has QE and a universal axiomatisation. So G, is the group
AfF(G) ~ k% x G of strictly increasing affine maps G — (. This is a GOG whose value
(ordered) set {v(f): f € G} is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Let M be an o-minimal expansion of the real ordered field. Suppose that each germ in G,
has a level, i.e.

VfeGm,deeZ,IneN, |log, o foexp, —expe| < 1.

Then Gy is a growth order groups whose centralisers are Archimedean.

Other examples include groups of formal series (e.g. transseries) under formal composition.



Examples 6/10

Strictly increasing affine maps

k: ordered field; G: ordered vector space over k; M:=(G,+,0,<,(g—cg)ceck)

Then M is o-minimal, and has QE and a universal axiomatisation. So G, is the group
AfF(G) ~ k% x G of strictly increasing affine maps G — (. This is a GOG whose value
(ordered) set {v(f): f € G} is 2.

In general, GOGs of finite value set are iterated semidirect products of Abelian ordered groups.

Let M be an o-minimal expansion of the real ordered field. Suppose that each germ in G,
has a level, i.e.

VfeGm,deeZ,IneN, |log, o foexp, —expe| < 1.

Then Gy is a growth order groups whose centralisers are Archimedean.

Other examples include groups of formal series (e.g. transseries) under formal composition.

Question: do growth order groups always act on ordered differential fields?
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A) construct ordered groups of formal non-commutative “asymptotic expansions'.

| Given a linearly ordered family (Cy),cy of ordered Abelian groups, defining group laws on
the Hahn product Hsevcs is involved from an algebraic standpoint.

It entails more information than just the family (Cs)scy and also entails making choices.
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Three routes in order to make sense of non-commutative asymptotic expansions:

B) Give Kaplansky-like descriptions of extensions of GOGs that do not add new valuations.

| This entails solving inequalities (7, 7/) > 1 over ordered groups, and even those which do
not require new valuations are difficult to study.
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A multipliability group is a group (G, -, 1) together with a family of partial functions
H(I,<) : gI — G
for all linearly ordered sets (I, <), extending the finite products: if i; < --- <i,, then

Migin, .. ind,<) 9= g(i1) - g(in).

There is a practical formalism of such products.

M: ordered monoid / k: ordered field. The group of k-valued series with well-partially ordered
supports C M that are tangent to the identity is a multipliability group in a natural way.

Work in progress

The group of positive infinite transseries has a natural structure of multipliability group. More-
over, each transseries | can be expressed uniquely as an infinite product

f:(ex)[no]odgrl]o...OJ[T'V]O... ’Y<)\EOH

for a fixed section of the valuation D3¢, 31,..., forng€Z and ry,...,r~,... € R™.
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v(lfs9)) <v(f) and w(lf,g]) <v(g).

If M is a polynomially bounded o-minimal expansion of the real ordered field, then the group
{id+ 6 :1lim o 6 € R} C Guq is nearly Abelian. On the contrary Aff;(G) is not nearly Abelian.

Work in progress

Suppose further that each centraliser in G is divisible and that valuative balls have the inter-
section property. Then each function

G—G; fog1 /% gnfm

forn>0 and a1 + -+ + «, € Z \ {0} is bijective and strictly monotonous.

Work in progress

Under a more precise assumption on the map (f, g)—v([f, g|), we obtain:
There is an extension of G whose valuative balls have the intersection property.

Future work: eliminating quantifiers in an extended language.



Thanks!



