March 29th, 2023

based on joint work with J. VAN DER HOEVEN, E. KAPLAN, L. S. KRAPP,

S. KUHLMANN, V. MANTOVA, D. PANAZZOLO and M. SERRA.

Ordered groups

Ordered groups

An ordered group is a group $(\mathcal{G},\cdot,1)$ equipped with a $\underline{\textit{linear}}$ ordering < with

$$f < g \Longrightarrow \left(h \, f < h \, g \wedge f \, h < g \, h \right)$$

for all $f, g, h \in \mathcal{G}$.

Ordered groups

Ordered groups

An ordered group is a group $(\mathcal{G}, \cdot, 1)$ equipped with a <u>linear</u> ordering < with

$$f < g \Longrightarrow (h \: f < h \: g \land f \: h < g \: h)$$

for all $f, g, h \in \mathcal{G}$.

Unary representations

A unary representation of \mathcal{G} is an embedding $t: (\mathcal{G}, \cdot, 1, <) \longrightarrow (\operatorname{Aut}(X, <_X), \circ, \operatorname{id}_X, <_{\forall})$ for some linearly ordered set X, where $<_{\forall}$ is the ordering by universal comparison.

Natural example: $(\mathcal{G}, <)$ itself with translations on the left, i.e. left.: $g \longmapsto (h \mapsto g h)$.

Ordered groups

Ordered groups

An ordered group is a group $(\mathcal{G}, \cdot, 1)$ equipped with a <u>linear</u> ordering < with

$$f < g \Longrightarrow (h \: f < h \: g \land f \: h < g \: h)$$

for all $f, g, h \in \mathcal{G}$.

Unary representations

A unary representation of \mathcal{G} is an embedding $t :: (\mathcal{G}, \cdot, 1, <) \longrightarrow (\operatorname{Aut}(X, <_X), \circ, \operatorname{id}_X, <_{\forall})$ for some linearly ordered set X, where $<_{\forall}$ is the ordering by universal comparison.

Natural example: $(\mathcal{G}, <)$ itself with translations on the left, i.e. left.: $g \longmapsto (h \mapsto g h)$.

Theorem [BALZANOV-BALDWIN-VERBOVSKIY, 2007]

If (X, <) is dense or $(X, t_{\cdot}, <_X) = (\mathcal{G}, \text{left.}, <)$, then $(X, (t_g)_{g \in \mathcal{G}}, <)$ has QE and is o-minimal.

Two examples

Abelian ordered groups and HAHN's embedding theorem

Each Abelian ordered group embeds in a Hahn ordered group

 $H[\mathfrak{M}, \mathbb{R}] = \{ f \in \mathbb{R}^{\mathfrak{M}} : (\text{supp } f) := \{ x \in \mathfrak{M} : f(x) \neq 0 \} \text{ is reverse well-ordered} \}$

where (\mathfrak{M}, \prec) is a linearly ordered set. Each f is represented as a series $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f(\mathfrak{m}) \mathfrak{m}$.

Two examples

Abelian ordered groups and HAHN's embedding theorem

Each Abelian ordered group embeds in a Hahn ordered group

 $H[\mathfrak{M}, \mathbb{R}] = \{ f \in \mathbb{R}^{\mathfrak{M}} : (\operatorname{supp} f) := \{ x \in \mathfrak{M} : f(x) \neq 0 \} \text{ is reverse well-ordered} \}$

where (\mathfrak{M},\prec) is a linearly ordered set. Each f is represented as a series $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f(\mathfrak{m}) \mathfrak{m}$.

Strictly increasing affine maps

Let K be an ordered field. Let (G, +, <) be an ordered vector space over K. Then $\operatorname{Aff}_{K}^{+}(G) := K^{>} \times G$ is an ordered group for the product $(a, \alpha) \cdot (b, \beta) := (a \ b, a \ \beta + \alpha)$ and the lexicographic ordering.

We can represent each (a, α) as the strictly increasing affine map $\operatorname{Aff}_{a,\alpha}: \gamma \mapsto a \cdot \gamma + \alpha$, and the ordering is then $(a, \alpha) < (b, \beta)$ iff $\operatorname{Aff}_{a,\alpha}(\gamma) < \operatorname{Aff}_{b,\beta}(\gamma)$ for sufficiently large $\gamma \in G$.

Univariate equations

Fix an ordered group $(\mathcal{G}, \cdot, 1, <)$. Define $\operatorname{Term}(\mathcal{G})$ as the free product of \mathcal{G} and $(y^{\mathbb{Z}}, \cdot) \simeq (\mathbb{Z}, +)$. Simple task: given

$$t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \operatorname{Term}(\mathcal{G}),$$

understand the theory of equations t(f) = 1 for f lying in ordered extensions of G.

Univariate equations

Fix an ordered group $(\mathcal{G}, \cdot, 1, <)$. Define $\operatorname{Term}(\mathcal{G})$ as the free product of \mathcal{G} and $(y^{\mathbb{Z}}, \cdot) \simeq (\mathbb{Z}, +)$. Simple task: given

$$t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \operatorname{Term}(\mathcal{G}),$$

understand the theory of equations t(f) = 1 for f lying in ordered extensions of G.

Remark. Given $\mathcal{G}' \supseteq \mathcal{G}$ and $f \in \mathcal{G}'$, the extension $\mathcal{G}\langle f \rangle / \mathcal{G}$ is determined by an ordering on the quotient group $\operatorname{Term}(\mathcal{G}) / N_f$ where

 $N_f = \{t(y): t(f) = 1\}.$

Univariate equations

Fix an ordered group $(\mathcal{G}, \cdot, 1, <)$. Define $\operatorname{Term}(\mathcal{G})$ as the free product of \mathcal{G} and $(y^{\mathbb{Z}}, \cdot) \simeq (\mathbb{Z}, +)$. Simple task: given

$$t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \operatorname{Term}(\mathcal{G}),$$

understand the theory of equations t(f) = 1 for f lying in ordered extensions of G.

Remark. Given $\mathcal{G}' \supseteq \mathcal{G}$ and $f \in \mathcal{G}'$, the extension $\mathcal{G}\langle f \rangle / \mathcal{G}$ is determined by an ordering on the quotient group $\operatorname{Term}(\mathcal{G}) / N_f$ where

 $N_f = \{t(y): t(f) = 1\}.$

Examples:

- $t(y) = f^{-1} y^{-1} f y \longrightarrow$ centralizer extension
- $t(y) = f^{-2} y \longrightarrow$ extension with a "square root".
- $t(y) = y f y^{-1} g \longrightarrow$ conjugacy extension

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{1}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{2}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Divisible closure for ordered Abelian groups

There is a universal divisible extension $(\mathcal{G}, \cdot, 1, <) \longrightarrow (\hat{\mathcal{G}}, \hat{\cdot}, \hat{1}, \hat{<}).$

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{3}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Divisible closure for ordered Abelian groups

There is a universal divisible extension $(\mathcal{G}, \cdot, 1, <) \longrightarrow (\hat{\mathcal{G}}, \hat{\cdot}, \hat{1}, \hat{<}).$

A classical result

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian ordered groups. It has QE and is o-minimal.

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{4}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Divisible closure for ordered Abelian groups

There is a universal divisible extension $(\mathcal{G}, \cdot, 1, <) \longrightarrow (\hat{\mathcal{G}}, \hat{\cdot}, \hat{1}, \hat{<}).$

A classical result

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian ordered groups. It has QE and is o-minimal.

In the non-Abelian case, solving

$$g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} = 1$$

in extensions of \mathcal{G} is highly non-trivial (recall the functional representation of \mathcal{G} ...).

Elementary property of an ordered group ${\boldsymbol{\mathcal{G}}}$

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Elementary property of an ordered group \mathcal{G}

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question. Is any ordered group contained in a divisible one?

Elementary property of an ordered group \mathcal{G}

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question. Is any ordered group contained in a divisible one?

[BLUDOV, 2005] No, in general.

Elementary property of an ordered group \mathcal{G}

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question. Is any ordered group contained in a divisible one?

[BLUDOV, 2005] No, in general.

Question 1: Is there an ordered group in which any two strictly positive elements are conjugate?

Elementary property of an ordered group \mathcal{G}

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question. Is any ordered group contained in a divisible one?

[BLUDOV, 2005] No, in general.

Question 1: Is there an ordered group in which any two strictly positive elements are conjugate?

Question 2: Is there a first-order theory of ordered groups which is complete and model complete, and has non-Abelian models? [PILLAY-STEINHORN, 1986]: such theory is not o-minimal.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}_{\mathcal{M}}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}_{\mathcal{M}}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}_{\mathcal{M}}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

Example. \mathcal{G} : ordered group. R: real-closed field. \mathbb{R}_{exp} : real exponential field.

• For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}_{\mathcal{M}}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

- For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.
- $\mathcal{M} = (G, +, <)$ is a divisible ordered Abelian group, then $\mathcal{G}_{\mathcal{M}} = \operatorname{Aff}_{\mathbb{Q}}^+(G)$.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}_{\mathcal{M}}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

- For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.
- $\mathcal{M} = (G, +, <)$ is a divisible ordered Abelian group, then $\mathcal{G}_{\mathcal{M}} = \operatorname{Aff}_{\mathbb{Q}}^+(G)$.
- For $\mathcal{M} = (R, <, +, \cdot)$, we have $\mathcal{G}_{\mathcal{M}} \supseteq \operatorname{Aff}_{R}^{+}(R)$. Moreover $\mathcal{F}_{\mathcal{M}}$ has a structure of differential field [VDDRIES, 1998].

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{F}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{F}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{F}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}_{\mathcal{M}}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

- For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.
- $\mathcal{M} = (G, +, <)$ is a divisible ordered Abelian group, then $\mathcal{G}_{\mathcal{M}} \subseteq \operatorname{Aff}_{\mathbb{Q}}^+(G)$.
- For M = (R, <, +, ·), we have G_M ⊇ Aff⁺(R). Moreover H_M has a structure of differential field [vDDRIES, 1998].
- The field $\mathcal{F}_{\mathbb{R}_{exp}}$ contains all germs of functions that can be obtained as combinations of exp, log, and semialgebraic functions.

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

fg > gf

to be solved in G?

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

fg > gf

to be solved in G?

In $\mathcal{G}_{\mathbb{R}_{exp}}$, if f grows much faster than g, then intuitively $f \circ g$ grows faster than $g \circ f$.

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

 $fg > g\,f$

to be solved in G?

In $\mathcal{G}_{\mathbb{R}_{exp}}$, if f grows much faster than g, then intuitively $f \circ g$ grows faster than $g \circ f$. How "much faster" must f grow? First of all, we should have $f > g \circ g \circ \cdots \circ g$ for all finite iterations.

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

 $fg > g\,f$

to be solved in G?

In $\mathcal{G}_{\mathbb{R}_{exp}}$, if f grows much faster than g, then intuitively $f \circ g$ grows faster than $g \circ f$. How "much faster" must f grow? First of all, we should have $f > g \circ g \circ \cdots \circ g$ for all finite iterations.

More precisely, we should have f > C(g), where

$$\mathcal{C}(g) = \{h \in \mathcal{G}_{\mathbb{R}_{\exp}} : h \circ g = g \circ h\}.$$

Consider the following axioms for an ordered group \mathcal{G} :

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > \mathcal{C}(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

By GOG2, the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering on $\mathcal{G}^{\neq 1}$, and the relation $f \asymp g$ iff $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

By GOG2, the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering on $\mathcal{G}^{\neq 1}$, and the relation $f \asymp g$ iff $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said scaling if $\mathcal{C}(\mathfrak{u})$ is Abelian, and for all $f \asymp \mathfrak{u}$, there is a $g \in \mathcal{C}(\mathfrak{u})$ such that $fg^{-1} \prec f$.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

By GOG2, the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering on $\mathcal{G}^{\neq 1}$, and the relation $f \asymp g$ iff $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said scaling if $\mathcal{C}(\mathfrak{u})$ is Abelian, and for all $f \asymp \mathfrak{u}$, there is a $g \in \mathcal{C}(\mathfrak{u})$ such that $fg^{-1} \prec f$.

GOG3. For every $f \neq 1$, there is a scaling \mathfrak{u} with $\mathfrak{u} \asymp f$.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

By GOG2, the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering on $\mathcal{G}^{\neq 1}$, and the relation $f \asymp g$ iff $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said scaling if $\mathcal{C}(\mathfrak{u})$ is Abelian, and for all $f \asymp \mathfrak{u}$, there is a $g \in \mathcal{C}(\mathfrak{u})$ such that $fg^{-1} \prec f$.

GOG3. For every $f \neq 1$, there is a scaling \mathfrak{u} with $\mathfrak{u} \asymp f$.

Definition: growth order group

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

By GOG2, the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering on $\mathcal{G}^{\neq 1}$, and the relation $f \asymp g$ iff $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said scaling if $\mathcal{C}(\mathfrak{u})$ is Abelian, and for all $f \asymp \mathfrak{u}$, there is a $g \in \mathcal{C}(\mathfrak{u})$ such that $fg^{-1} \prec f$.

GOG3. For every $f \neq 1$, there is a scaling \mathfrak{u} with $\mathfrak{u} \asymp f$.

Definition: growth order group

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Question 3: If \mathcal{M} expands the real ordered field, then must $\mathcal{G}_{\mathcal{M}}$ be a growth order group?

Expansions

Additive expansions in $\mathcal{F}_{\mathrm{exp}}$

Any $f \in \mathcal{F}_{exp}$ can be approximated using "additively indecomposable" germs $\mathfrak{m}_0, \ldots, \mathfrak{m}_n$ where $\mathfrak{m}_{i+1} = o_{+\infty}(\mathfrak{m}_i)$ and $f - r_0 \mathfrak{m}_0 - \cdots - r_n \mathfrak{m}_n = o_{+\infty}(\mathfrak{m}_n)$.

E.g.
$$(x \log x)^{\text{inv}} \stackrel{?}{=} \frac{x}{\log x} + \frac{x \log_2 x}{(\log x)^2} + \frac{1}{2} \frac{x (\log_2 x)^2}{(\log x)^3} + \cdots$$

Expansions

Additive expansions in $\mathcal{F}_{\mathrm{exp}}$

Any $f \in \mathcal{F}_{exp}$ can be approximated using "additively indecomposable" germs $\mathfrak{m}_0, \ldots, \mathfrak{m}_n$ where $\mathfrak{m}_{i+1} = o_{+\infty}(\mathfrak{m}_i)$ and $f - r_0 \mathfrak{m}_0 - \cdots - r_n \mathfrak{m}_n = o_{+\infty}(\mathfrak{m}_n)$.

E.g.
$$(x \log x)^{\text{inv}} \stackrel{?}{=} \frac{x}{\log x} + \frac{x \log_2 x}{(\log x)^2} + \frac{1}{2} \frac{x (\log_2 x)^2}{(\log x)^3} + \cdots$$

Compositional expansions in $\mathcal{G}_{\mathrm{exp}}$

Take $f \in \mathcal{G}_{exp}$. Can f be approximated using "compositionally indecomposable" germs f_0, \ldots, f_n where $f_0 \succ f_1 \succ \cdots \succ f_n$ and

$$f \circ (f_n^{[r_n]} \circ \cdots \circ f_1^{[r_1]} \circ f_0^{[r_0]})^{-1} \prec f_n$$

What should the infinite composition

$$\cdots \circ f_n \circ \cdots \circ f_0$$

mean?

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and log must be uniformly bounded.

Composition law

 \mathbb{T} has a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ acting termwise on the right:

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Composition law

 \mathbb{T} has a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ acting termwise on the right:

$$f \circ \log x = \sum_{n=1}^{+\infty} n! x^{1/n} + \log_3 x + 7 + (\log x)^{-2} \log_2 x + \sum_{p=0}^{+\infty} e^{-(\log x)^{p+1}} (\log x)^p.$$

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Composition law

 \mathbb{T} has a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ acting termwise on the right:

$$f \circ \log x = \sum_{n=1}^{+\infty} n! x^{1/n} + \log_3 x + 7 + (\log x)^{-2} \log_2 x + \sum_{p=0}^{+\infty} e^{-(\log x)^{p+1}} (\log x)^p.$$

Remark: The elements 2x and x+1 are conjugate, via $(2x) \circ e^{(\log 2)x} = e^{(\log 2)x} \circ (x+1)$.

We now look at the structure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

We now look at the structure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

Proposition [B., 2022]

This is a growth order group.

We now look at the structure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

Proposition [B., 2022]

This is a growth order group.

It is not divisible since e^x has no square root. However:

Theorem [Edgar, 2018]

Any two f, g > x with $f, g \prec e^x$ are conjugate.

We now look at the structure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

Proposition [B., 2022]

This is a growth order group.

It is not divisible since e^x has no square root. However:

Theorem [Edgar, 2018]

Any two f, g > x with $f, g \prec e^x$ are conjugate.

Since $x + 1 \prec e^x$ and $f^{[n]} = x + 1$ has a solution $f = x + \frac{1}{n}$ for all $n \in \mathbb{N}^>$, we deduce that

$$\mathbb{T}_0^{>\mathbb{R}} := \{ f \in \mathbb{T}^{>\mathbb{R}} : f \prec e^x \}$$

is a divisible growth order group.

SCHMELING: defined an extension of \mathbb{T} with formal symbols $e_{\omega^n}^x$, $\ell_{\omega^n}x$, $n \in \mathbb{N}$, where $e_1^x = e^x$ and

$$e_{\omega^n+1}^x \circ (x+1) = e_{\omega^n}^x \circ e_{\omega^n+1}(x)$$

$$e_{\omega^n}^x \circ (\ell_{\omega^n} x) = (\ell_{\omega^n} x) \circ e_{\omega^n}^x = x.$$
(5)

SCHMELING: defined an extension of \mathbb{T} with formal symbols $e_{\omega^n}^x$, $\ell_{\omega^n} x$, $n \in \mathbb{N}$, where $e_1^x = e^x$ and

$$e_{\omega^n+1}^x \circ (x+1) = e_{\omega^n}^x \circ e_{\omega^{n+1}}(x)$$

$$e_{\omega^n}^x \circ (\ell_{\omega^n} x) = (\ell_{\omega^n} x) \circ e_{\omega^n}^x = x.$$
(6)

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

A differential ordered field with composition $(\mathbb{L}, +, \times, <, \partial, \circ)$ where for all $\mu \in \mathbf{On}$, we have a symbol $\ell_{\omega^{\mu}} x \in \mathbb{L}$ with $\ell_1 x = \log x$ and

$$(\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x) = (\ell_{\omega^{\mu+1}} x) - 1.$$

I.e. the inverse equations of (6) are valid. But $(\mathbb{L}^{>\mathbb{R}}, \circ, x)$ is not a group.

SCHMELING: defined an extension of \mathbb{T} with formal symbols $e_{\omega^n}^x$, $\ell_{\omega^n} x$, $n \in \mathbb{N}$, where $e_1^x = e^x$ and

$$e_{\omega^n+1}^x \circ (x+1) = e_{\omega^n}^x \circ e_{\omega^n+1}(x)$$

$$e_{\omega^n}^x \circ (\ell_{\omega^n} x) = (\ell_{\omega^n} x) \circ e_{\omega^n}^x = x.$$

$$(7)$$

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

A differential ordered field with composition $(\mathbb{L}, +, \times, <, \partial, \circ)$ where for all $\mu \in \mathbf{On}$, we have a symbol $\ell_{\omega^{\mu}} x \in \mathbb{L}$ with $\ell_1 x = \log x$ and

$$(\ell_{\omega^{\mu+1}}x) \circ (\ell_{\omega^{\mu}}x) = (\ell_{\omega^{\mu+1}}x) - 1.$$

I.e. the inverse equations of (7) are valid. But $(\mathbb{L}^{>\mathbb{R}}, \circ, x)$ is not a group.

Finitely nested hyperseries [B.-VDHOEVEN-KAPLAN, 2021]

An extension $\tilde{\mathbb{L}} \supseteq \mathbb{L}$ where $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $s \mapsto (\ell_{\omega^{\mu}} x) \circ s$ is bijective and strictly increasing.

SCHMELING: defined an extension of \mathbb{T} with formal symbols $e_{\omega^n}^x$, $\ell_{\omega^n} x$, $n \in \mathbb{N}$, where $e_1^x = e^x$ and

$$e_{\omega^{n+1}}^{x} \circ (x+1) = e_{\omega^{n}}^{x} \circ e_{\omega^{n+1}}(x)$$

$$e_{\omega^{n}}^{x} \circ (\ell_{\omega^{n}} x) = (\ell_{\omega^{n}} x) \circ e_{\omega^{n}}^{x} = x.$$

$$(8)$$

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

A differential ordered field with composition $(\mathbb{L}, +, \times, <, \partial, \circ)$ where for all $\mu \in \mathbf{On}$, we have a symbol $\ell_{\omega^{\mu}} x \in \mathbb{L}$ with $\ell_1 x = \log x$ and

$$(\ell_{\omega^{\mu+1}}x) \circ (\ell_{\omega^{\mu}}x) = (\ell_{\omega^{\mu+1}}x) - 1.$$

I.e. the inverse equations of (8) are valid. But $(\mathbb{L}^{>\mathbb{R}}, \circ, x)$ is not a group.

Finitely nested hyperseries [B.-VDHOEVEN-KAPLAN, 2021]

An extension $\tilde{\mathbb{L}} \supseteq \mathbb{L}$ where $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}}$; $s \mapsto (\ell_{\omega^{\mu}} x) \circ s$ is bijective and strictly increasing.

Theorem [B., 2022]

The derivation ∂ and composition law \circ on \mathbb{L} extend in a natural way to \mathbb{L} .

Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure $(\mathbb{\tilde{L}}^{>\mathbb{R}}, \circ, x, <)$ is an ordered group.

Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure $(\mathbb{\tilde{L}}^{>\mathbb{R}}, \circ, x, <)$ is an ordered group.

In $\mathbb{\tilde{L}}^{>\mathbb{R}}$, all conjugacy equations can now be solved:

Theorem [B., 2022]Any two f, g in $\mathbb{\tilde{L}}^{>\mathbb{R}}$ with f, g > x are conjugate.

Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is an ordered group.

In $\mathbb{\tilde{L}}^{>\mathbb{R}}$, all conjugacy equations can now be solved:

Theorem [B., 2022] Any two f, g in $\tilde{\mathbb{L}}^{>\mathbb{R}}$ with f, g > x are conjugate.

Proposition [B., 2022]

The structure $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is a growth order group.

So we have a GOG solution to our **Question 1** on ordered groups.

Ordered products

Let J be a set, write $J^* := \bigcup_{n \in \mathbb{N}} J^n$, seen as a monoid for the concatenation law. Let $k \langle\!\langle J \rangle\!\rangle$ be the local algebra of functions $J^* \longrightarrow k$ under pointwise sum and Cauchy product. Writing $X_{\theta} = \chi_{\{\theta\}}$ for all $\theta \in J^*$, each $P \in k \langle\!\langle J \rangle\!\rangle$ is a formal sum

$$P = \sum_{\theta \in J^{\star}} P(\theta) X_{\theta}.$$

Ordered products

Let J be a set, write $J^* := \bigcup_{n \in \mathbb{N}} J^n$, seen as a monoid for the concatenation law. Let $k \langle \! \langle J \rangle \! \rangle$ be the local algebra of functions $J^* \longrightarrow k$ under pointwise sum and Cauchy product. Writing $X_{\theta} = \chi_{\{\theta\}}$ for all $\theta \in J^*$, each $P \in k \langle \! \langle J \rangle \! \rangle$ is a formal sum

$$P = \sum_{\theta \in J^{\star}} P(\theta) X_{\theta}.$$

If < is a linear ordering on J, then we have a formal ordered product

$$\cdots (1+X_j) \cdots (1+X_i) \cdots := \mathbf{OP}_{(J,<)} \in k \langle\!\langle J \rangle\!\rangle$$

Ordered products

Let J be a set, write $J^* := \bigcup_{n \in \mathbb{N}} J^n$, seen as a monoid for the concatenation law. Let $k \langle \! \langle J \rangle \! \rangle$ be the local algebra of functions $J^* \longrightarrow k$ under pointwise sum and Cauchy product. Writing $X_{\theta} = \chi_{\{\theta\}}$ for all $\theta \in J^*$, each $P \in k \langle \! \langle J \rangle \! \rangle$ is a formal sum

$$P = \sum_{\theta \in J^{\star}} P(\theta) X_{\theta}.$$

If < is a linear ordering on J, then we have a formal ordered product

$$\cdots (1+X_j) \cdots (1+X_i) \cdots := \mathbf{OP}_{(J,<)} \in k \langle\!\langle J \rangle\!\rangle.$$

If A is a local algebra equipped with a notion of transfinite sum and A is closed under sums $(a_{j_1} \cdot a_{j_2} \cdots a_{j_n})_{(j_1, \ldots, j_n) \in J^*}$ whenever $a = (a_j)_{j \in J}$ is summable, then the products

$$\prod_{(J,<)} a := \sum_{(j_1,\ldots,j_n) \in J^*} OP_{(J,<)}(j_1,\ldots,j_n) a_{j_1} \cdots a_{j_n}$$

are well-defined.

Strong groups

A group \mathcal{G} is said **strong** if, for all linearly ordered sets $I = (\underline{I}, <)$, we have partial functions $\Pi_I \subseteq \mathcal{G}^{\underline{I}} \to \mathcal{G}$ defined on subgroups dom Π_I of $\mathcal{G}^{(\underline{I})}$, sending each $\chi_{\{g\}}, g \in \mathcal{G}$ to g, and such that:

Strong groups

A group \mathcal{G} is said **strong** if, for all linearly ordered sets $I = (\underline{I}, <)$, we have partial functions $\Pi_I \subseteq \mathcal{G}^I \to \mathcal{G}$ defined on subgroups dom Π_I of $\mathcal{G}^{(\underline{I})}$, sending each $\chi_{\{g\}}, g \in \mathcal{G}$ to g, and such that: **SG1.** If $\varphi: I \longrightarrow J$ is an order isomorphism and $g \in \text{dom } \Pi_J$, then $g \circ \varphi \in \text{dom } \Pi_I$ and

 $\Pi_I(g\circ\varphi)=\Pi_Jg.$

SG2. If $I = \prod_{j \in J} I_j$ and $g \in \text{dom } \Pi_I$, then writing $g_j := g \upharpoonright I_j$ for all $j \in \underline{J}$, we have

 $g_j \in \operatorname{dom} \Pi_{I_j}$ and $(\Pi_{I_j} g_j)_{j \in \underline{J}} \in \operatorname{dom} \Pi_J$ and $\Pi_J((\Pi_{I_j} g_j)_{j \in \underline{J}}) = \Pi_I g.$

SG3. If $I = I_1 \amalg I_2$ an $(g, h) \in \operatorname{dom} \Pi_{I_1} \times \operatorname{dom} \Pi_{I_2}$, then $(g \sqcup h) \in \operatorname{dom} \Pi_I$.

SG4. If $g \in \operatorname{dom} \Pi_I$ and $g_0 \in \mathcal{G}$, then $g_0 \cdot g \cdot g_0^{-1} \in \operatorname{dom} \Pi_I$ and

$$\Pi_{I}(g_{0} \cdot g \cdot g_{0}^{-1}) = g_{0} \cdot (\Pi_{I}g) \cdot g_{0}^{-1}.$$

SG5. If $g \in \operatorname{dom} \Pi_I$, then $g^{-1} \in \operatorname{dom} \Pi_{I^*}$ and

 $\Pi_{I^*} g^{-1} = (\Pi_I g)^{-1}.$

Let \mathcal{G} be the growth order group of positive infinite elements of $\mathbb{R}[[x^{\mathbb{R}}]]$. This is a strong group.

Let \mathcal{G} be the growth order group of positive infinite elements of $\mathbb{R}[[x^{\mathbb{R}}]]$. This is a strong group. Full list of representatives in each equivalence class for \asymp

 $x^2 \qquad \succ \qquad 2x \qquad \succ \qquad x + x^s, s \in (-\infty, 1).$

Let \mathcal{G} be the growth order group of positive infinite elements of $\mathbb{R}[[x^{\mathbb{R}}]]$. This is a strong group. Full list of representatives in each equivalence class for \asymp

 $x^2 \qquad \succ \qquad 2x \qquad \succ \qquad x+x^s, s \in (-\infty,1).$

Each element $f \in \mathcal{G}$ is a well-ordered product

$$f = \dots \circ (x + x^{s_{\gamma}})^{[r_{\gamma}]} \circ \dots \circ (x + x^{s_{0}})^{[r_{0}]} \circ (2x)^{[r]} (x^{2})^{[s]}$$

for a unique family $(r_{\gamma}, s_{\gamma})_{\gamma < \lambda} \in (\mathbb{R} \times (-\infty, 1))^{\lambda}$ and unique $r, s \in \mathbb{R}$.

Let \mathcal{G} be the growth order group of positive infinite elements of $\mathbb{R}[[x^{\mathbb{R}}]]$. This is a strong group. Full list of representatives in each equivalence class for \asymp

 $x^2 \qquad \succ \qquad 2x \qquad \succ \qquad x+x^s, s \in (-\infty,1).$

Each element $f \in \mathcal{G}$ is a well-ordered product

$$f = \dots \circ (x + x^{s_{\gamma}})^{[r_{\gamma}]} \circ \dots \circ (x + x^{s_{0}})^{[r_{0}]} \circ (2x)^{[r]} (x^{2})^{[s]}$$

for a unique family $(r_{\gamma}, s_{\gamma})_{\gamma < \lambda} \in (\mathbb{R} \times (-\infty, 1))^{\lambda}$ and unique $r, s \in \mathbb{R}$.

As a consequence, this growth order group is "Cauchy-complete" for the relation \prec .

Let \mathcal{G} be the growth order group of positive infinite elements of $\mathbb{R}[[x^{\mathbb{R}}]]$. This is a strong group. Full list of representatives in each equivalence class for \asymp

 $x^2 \qquad \succ \qquad 2x \qquad \succ \qquad x+x^s, s \in (-\infty,1).$

Each element $f \in \mathcal{G}$ is a well-ordered product

$$f = \dots \circ (x + x^{s_{\gamma}})^{[r_{\gamma}]} \circ \dots \circ (x + x^{s_{0}})^{[r_{0}]} \circ (2x)^{[r]} (x^{2})^{[s]}$$

for a unique family $(r_{\gamma}, s_{\gamma})_{\gamma < \lambda} \in (\mathbb{R} \times (-\infty, 1))^{\lambda}$ and unique $r, s \in \mathbb{R}$.

As a consequence, this growth order group is "Cauchy-complete" for the relation \prec .

This can be generalized to larger subgroups of $\mathbb{\tilde{L}}^{>\mathbb{R}}$.

Thank you!