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Ordered groups 2/18

An ordered group is a group (G ; �; 1) equipped with a linear ordering < with

f < g=) (h f <h g ^ f h< gh)

for all f ; g; h2G.

Ordered groups

A unary representation of G is an embedding t�: (G ; �; 1; <)¡! (Aut(X;<X); �; idX ; <8)
for some linearly ordered set X, where <8 is the ordering by universal comparison.

Unary representations

Natural example: (G ; <) itself with translations on the left, i.e. left�: g 7¡! (h 7! g h).

If (X;<) is dense or (X;t�;<X)=(G ; left�;<), then (X;(tg)g2G ;<) has QE and is o-minimal.

Theorem [BALZANOV-BALDWIN-VERBOVSKIY, 2007]
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Two examples 3/18

Each Abelian ordered group embeds in a Hahn ordered group

H[M;R] = ff 2RM : (supp f) := fx2M : f(x)=/ 0g is reverse well-ordered g

where (M;�) is a linearly ordered set. Each f is represented as a series f =
P

m2M f(m)m.

Abelian ordered groups and HAHN's embedding theorem

Let K be an ordered field. Let (G;+;<) be an ordered vector space over K. Then AffK
+(G) :=

K>�G is an ordered group for the product (a; �) � (b; �) := (a b; a:�+�) and the lexico-
graphic ordering.

Strictly increasing affine maps

We can represent each (a;�) as the strictly increasing affine map Affa;�:  7!a:+�, and the
ordering is then (a; �)< (b; �) iff Affa;�()<Affb;�() for sufficiently large  2G.
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Univariate equations 4/18

Fix an ordered group (G ; �;1;<). Define Term(G) as the free product of G and (yZ; �)' (Z;+).

Simple task: given

t(y)= g1 y
�1 � � � gn y�n2Term(G);

understand the theory of equations t(f)=1 for f lying in ordered extensions of G.

Remark. Given G 0�G and f 2G 0, the extension Ghf i/G is determined by an ordering on the
quotient group Term(G)/Nf where

Nf = ft(y) : t(f)= 1g:

Examples:

� t(y)= f¡1 y¡1 f y ¡! centralizer extension

� t(y)= f¡2 y ¡! extension with a �square root�.

� t(y)= y f y¡1 g ¡! conjugacy extension



Univariate equations 4/18

Fix an ordered group (G ; �;1;<). Define Term(G) as the free product of G and (yZ; �)' (Z;+).

Simple task: given

t(y)= g1 y
�1 � � � gn y�n2Term(G);

understand the theory of equations t(f)=1 for f lying in ordered extensions of G.

Remark. Given G 0�G and f 2G 0, the extension Ghf i/G is determined by an ordering on the
quotient group Term(G)/Nf where

Nf = ft(y) : t(f)= 1g:

Examples:

� t(y)= f¡1 y¡1 f y ¡! centralizer extension

� t(y)= f¡2 y ¡! extension with a �square root�.

� t(y)= y f y¡1 g ¡! conjugacy extension



Univariate equations 4/18

Fix an ordered group (G ; �;1;<). Define Term(G) as the free product of G and (yZ; �)' (Z;+).

Simple task: given

t(y)= g1 y
�1 � � � gn y�n2Term(G);

understand the theory of equations t(f)=1 for f lying in ordered extensions of G.

Remark. Given G 0�G and f 2G 0, the extension Ghf i/G is determined by an ordering on the
quotient group Term(G)/Nf where

Nf = ft(y) : t(f)= 1g:

Examples:

� t(y)= f¡1 y¡1 f y ¡! centralizer extension

� t(y)= f¡2 y ¡! extension with a �square root�.

� t(y)= y f y¡1 g ¡! conjugacy extension



Abelian and non-Abelian ordered groups 5/18

Assume (G ; �;1) is Abelian. For f in an Abelian o.g. extension of G, and t(y)= g1 y
�1 ��� gny�n2

Term(G), we have t(f)= 1 if and only if

fn= g (1)

where � :=
P

i=1
n �i2Z and g := gn

¡1 � � � g1¡12G.

There is a universal divisible extension (G ; �; 1; <)¡! (Ĝ ; �̂ ; 1̂; <̂).

Divisible closure for ordered Abelian groups

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian
ordered groups. It has QE and is o-minimal.

A classical result

In the non-Abelian case, solving

g1 y
�1 � � � gn y�n=1

in extensions of G is highly non-trivial (recall the functional representation of G . . . ).
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Divisibility, conjugacy, problems 6/18

A) [LEVI, 1942] for m> 0, fm= gm=) f = g.

B) [NEUMANN, 1949] for m;n> 0, [fm; gn] = 1=) [f ; g] = 1.

Elementary property of an ordered group G

Question. Is any ordered group contained in a divisible one?

[BLUDOV, 2005] No, in general.

Question 1: Is there an ordered group in which any two strictly positive elements are
conjugate?

Question 2: Is there a first-order theory of ordered groups which is complete and model
complete, and has non-Abelian models? [PILLAY-STEINHORN, 1986]: such theory is not
o-minimal.
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Ordered groups from o-minimal structures 7/18

Let M=(M;<; : : : ) be an o-minimal structure.

Write FM for the set of germs [f ] at +1 of definable maps f :M ¡!M . We have M4FM
for a natural �asymptotic� structure on HM. We set:

GM := f[f ]2FM : [f ]>M g=
n
[f ] : lim

+1
f =+1

o
:

GM is closed under composition [f ] � [g] = [f � g], and (GM; �; [idM]; <) is an ordered group.

Example. G: ordered group. R: real-closed field. Rexp: real exponential field.
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� For M=(G ; <; (leftg)g2G), we have GM'G.

� M=(G;+; <) is a divisible ordered Abelian group, then GM�AffQ
+(G).

� ForM=(R;<;+; �), we have GM!Aff+(R). Moreover HM has a structure of differential
field [VDDRIES, 1998].

� The field FRexp contains all germs of functions that can be obtained as combinations of exp,
log, and semialgebraic functions.



A growth axiom 8/18

Let G be an ordered group and let f ; g 2G with f ; g > 1. How is the inequation

f g > g f

to be solved in G?

A simple inequation

In GRexp, if f grows much faster than g, then intuitively f � g grows faster than g � f .

How �much faster� must f grow? First of all, we should have f > g � g � � � � � g for all finite
iterations.

More precisely, we should have f > C(g), where

C(g)= fh2GRexp :h � g= g �hg:
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Growth order groups 9/18

Consider the following axioms for an ordered group G:

GOG1. For all f ; g > 1, we have f > C(g)=) f g > g f .

GOG2. For all f ; g > 1 with f > g and all g 02C(g), there is an f 02C(f) with f 0> g 0.

ByGOG2, the relation g� f()C(g)<max (f ; f¡1) is an ordering on G=/1, and the relation
f � g iff (f � g and g � f) is a convex equivalence relation.

An element u2G n f1g is said scaling if C(u) is Abelian, and for all f � u, there is a g 2C(u)
such that f g¡1� f .

GOG3. For every f =/ 1, there is a scaling u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

Question 3: If M expands the real ordered field, then must GM be a growth order
group?
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Any f 2Fexp can be approximated using �additively indecomposable� germs m0; : : : ;mn where
mi+1= o+1(mi) and f ¡ r0m0¡ � � � ¡ rnmn= o+1(mn).

E.g. (x log x)inv =
? x

log x
+ x log2x
(log x)2

+ 1
2
x (log2x)2

(log x)3
+ � � �

Additive expansions in Fexp

Take f 2Gexp. Can f be approximated using �compositionally indecomposable� germs f0; : : : ;
fn where f0� f1� � � � � fn and

f � (fn
[rn] � � � � � f1

[r1] � f0
[r0])¡1� fn

What should the infinite composition

� � � � fn � � � � � f0

mean?

Compositional expansions in Gexp
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Field T of transseries: generalized series involving x, logx and ex and combinations thereof.

f :=
X
n=1

+1

n! e /
x
n+log2x+7+x¡2 log x+

X
p=0

+1

e¡x
p+1

xp is a transseries:

The number of iterations of exp and log must be uniformly bounded.

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

T has a composition law �:T�T>R¡!T acting termwise on the right:

f � log x=
X
n=1

+1

n!x /1 n+log3x+7+ (log x)¡2 log2x+
X
p=0

+1

e¡(logx)
p+1

(log x)p:

Composition law

Remark: The elements 2x and x+1 are conjugate, via (2x) � e(log2)x=e(log2)x � (x+1).
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Conjugacy in transseries 12/18

We now look at the structure (T>R; x; �; <).

This is a right-ordered group, i.e for all f ; g; h, f > g) f �h> g �h.
Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a growth order group.

Proposition [B., 2022]

It is not divisible since ex has no square root. However:

Any two f ; g >x with f ; g� ex are conjugate.

Theorem [Edgar, 2018]

Since x+1� ex and f [n]=x+1 has a solution f =x+ 1

n
for all n2N>, we deduce that

T0
>R := ff 2T>R : f � exg

is a divisible growth order group.
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SCHMELING: defined an extension ofT with formal symbols e!nx ; `!nx, n2N, where e1x=ex and

e!n+1
x � (x+1) = e!nx � e!n+1(x) (5)

e!nx � (`!nx)= (`!nx) � e!nx = x:

A differential ordered field with composition (L;+;�; <; @; �) where for all �2On, we have
a symbol `!�x2L with `1x= log x and

(`!�+1x) � (`!�x)= (`!�+1x)¡ 1:

I.e. the inverse equations of (5) are valid. But (L>R; �; x) is not a group.

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

An extension L~ �L where L~ >R¡!L~ >R; s 7! (`!�x) � s is bijective and strictly increasing.

Finitely nested hyperseries [B.-VDHOEVEN-KAPLAN, 2021]

The derivation @ and composition law � on L extend in a natural way to L~ .

Theorem [B., 2022]
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Using Taylor series arguments, one shows that:

The structure (L~ >R; �; x;<) is an ordered group.

Proposition [B., 2022]

In L~ >R, all conjugacy equations can now be solved:

Any two f ; g in L~ >R with f ; g >x are conjugate.

Theorem [B., 2022]

The structure (L~ >R; �; x;<) is a growth order group.

Proposition [B., 2022]

So we have a GOG solution to our Question 1 on ordered groups.
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Ordered products 15/18

Let J be a set, write J? :=
S
n2N J

n, seen as a monoid for the concatenation law. Let khhJii
be the local algebra of functions J?¡! k under pointwise sum and Cauchy product. Writing
X�= �f�g for all � 2 J?, each P 2 khhJii is a formal sum

P =
X
�2J?

P (�)X�:

If < is a linear ordering on J , then we have a formal ordered product

� � � (1+Xj) � � � (1+Xi) � � �
i<j

:=OP(J;<)2 khhJii:

If A is a local algebra equipped with a notion of transfinite sum and A is closed under sums
(aj1 � aj2 � � � ajn)(j1; : : : ;jn)2J? whenever a=(aj)j2J is summable, then the productsY

(J;<)

a :=
X

(j1; : : : ;jn)2J?
OP(J;<)(j1; : : : ; jn) aj1 � � � ajn

are well-defined.
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A group G is said strong if, for all linearly ordered sets I = (I ; <), we have partial functions
�I�GI!G defined on subgroups dom�I of G(I), sending each �fgg; g2G to g, and such that:

SG1. If ': I ¡!J is an order isomorphism and g 2 dom�J, then g � '2 dom�I and

�I(g � ')=�J g:

SG2. If I =
`

j2J Ij and g 2 dom�I, then writing gj := g � Ij for all j 2 J , we have

gj 2 dom�Ij and (�Ij gj)j2J 2 dom�J and �J((�Ij gj)j2J)=�I g:

SG3. If I = I1q I2 an (g; h)2 dom�I1� dom�I2, then (g th)2 dom�I.

SG4. If g 2 dom�I and g02G, then g0 � g � g0¡12 dom�I and

�I(g0 � g � g0¡1)= g0 � (�I g) � g0¡1:

SG5. If g 2 dom�I, then g¡12 dom�I� and

�I� g¡1=(�I g)¡1:
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An example 17/18

Let G be the growth order group of positive infinite elements of R[[xR]]. This is a strong group.

Full list of representatives in each equivalence class for �

x2 � 2x � x+xs; s2 (¡1; 1):

Each element f 2 G is a well-ordered product

f = � � � � (x+xs)[r] � � � � � (x+xs0)[r0] � (2x)[r] (x2)[s]

for a unique family (r ; s)<�2 (R� (¡1; 1))� and unique r; s2R.

As a consequence, this growth order group is �Cauchy-complete� for the relation �.

This can be generalized to larger subgroups of L~ >R.
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Thank you!
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