Some ordered groups of generalized series

BY VINCENT BAGAYOKO

November 10, 2022

based on joint work with E. KAPLAN, J. VAN DER HOEVEN and V. MANTOVA

Ordered groups

Ordered groups

An ordered group is a group $(\mathcal{G}, \cdot, 1)$ equipped with a <u>linear</u> ordering < with

 $f < g \Longrightarrow \left(h \, f < h \, g \wedge f \, h < g \, h \right)$

for all $f, g, h \in \mathcal{G}$.

Ordered groups

Ordered groups

An ordered group is a group $(\mathcal{G}, \cdot, 1)$ equipped with a <u>linear</u> ordering < with

$$f < g \Longrightarrow (h \: f < h \: g \land f \: h < g \: h)$$

for all $f, g, h \in \mathcal{G}$.

Unary representations

A unary representation of \mathcal{G} is an embedding $t: (\mathcal{G}, \cdot, 1, <) \longrightarrow (\operatorname{Aut}(X, <_X), \circ, \operatorname{id}_X, <_{\forall})$ for some linearly ordered set X, where $<_{\forall}$ is the ordering by universal comparison.

Natural example: $(\mathcal{G}, <)$ itself with translations on the left, i.e. left.: $g \longmapsto (h \mapsto g h)$.

Ordered groups

Ordered groups

An ordered group is a group $(\mathcal{G}, \cdot, 1)$ equipped with a <u>linear</u> ordering < with

$$f < g \Longrightarrow (h \: f < h \: g \land f \: h < g \: h)$$

for all $f, g, h \in \mathcal{G}$.

Unary representations

A unary representation of \mathcal{G} is an embedding $t: (\mathcal{G}, \cdot, 1, <) \longrightarrow (\operatorname{Aut}(X, <_X), \circ, \operatorname{id}_X, <_{\forall})$ for some linearly ordered set X, where $<_{\forall}$ is the ordering by universal comparison.

Natural example: $(\mathcal{G}, <)$ itself with translations on the left, i.e. left.: $g \longmapsto (h \mapsto g h)$.

Theorem [BALZANOV-BALDWIN-VERBOVSKIY, 2007]

If (X, <) is dense or $(X, t_{\cdot}, <_X) = (\mathcal{G}, \text{left.}, <)$, then $(X, (t_g)_{g \in \mathcal{G}}, <)$ has QE and is o-minimal.

Two examples

Abelian ordered groups and HAHN's embedding theorem

Each Abelian ordered group embeds in a Hahn ordered group

 $H[\mathfrak{M}, \mathbb{R}] = \{ f \in \mathbb{R}^{\mathfrak{M}} : (\text{supp } f) := \{ x \in \mathfrak{M} : f(x) \neq 0 \} \text{ is reverse well-ordered} \}$

where (\mathfrak{M},\prec) is a linearly ordered set. Each f is represented as a series $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f(\mathfrak{m}) \mathfrak{m}$.

Two examples

Abelian ordered groups and HAHN's embedding theorem

Each Abelian ordered group embeds in a Hahn ordered group

 $H[\mathfrak{M}, \mathbb{R}] = \{ f \in \mathbb{R}^{\mathfrak{M}} : (\text{supp } f) := \{ x \in \mathfrak{M} : f(x) \neq 0 \} \text{ is reverse well-ordered} \}$

where (\mathfrak{M},\prec) is a linearly ordered set. Each f is represented as a series $f = \sum_{\mathfrak{m} \in \mathfrak{M}} f(\mathfrak{m}) \mathfrak{m}$.

Strictly increasing affine maps

Let K be an ordered field. Let (G, +, <) be an ordered vector space over K. Then $\operatorname{Aff}_{K}^{+}(G) := K^{>} \times G$ is an ordered group for the product $(a, \alpha) \cdot (b, \beta) := (a \ b, a \ \beta + \alpha)$ and the lexicographic ordering.

We can represent each (a, α) as the strictly increasing affine map $\operatorname{Aff}_{a,\alpha}: \gamma \mapsto a \cdot \gamma + \alpha$, and the ordering is then $(a, \alpha) < (b, \beta)$ iff $\operatorname{Aff}_{a,\alpha}(\gamma) < \operatorname{Aff}_{b,\beta}(\gamma)$ for sufficiently large $\gamma \in G$.

Univariate equations

Fix an o.g. $(\mathcal{G}, \cdot, 1, <)$. Term (\mathcal{G}) : free product of \mathcal{G} and $(y^{\mathbb{Z}}, \cdot) \simeq (\mathbb{Z}, +)$. Simple task: given

$$t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \operatorname{Term}(\mathcal{G})$$

understand the theory of equations t(f) = 1 for f lying in extensions of \mathcal{G} .

Univariate equations

Fix an o.g. $(\mathcal{G}, \cdot, 1, <)$. Term (\mathcal{G}) : free product of \mathcal{G} and $(y^{\mathbb{Z}}, \cdot) \simeq (\mathbb{Z}, +)$. Simple task: given

$$t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \operatorname{Term}(\mathcal{G})$$

understand the theory of equations t(f) = 1 for f lying in extensions of G.

Remark. Given $\mathcal{G}' \supseteq \mathcal{G}$ and $f \in \mathcal{G}'$, the extension $\mathcal{G}\langle f \rangle / \mathcal{G}$ is determined by an ordering on the quotient group $\operatorname{Term}(\mathcal{G}) / N_f$ where

 $N_f = \{t(y): t(f) = 1\}.$

Univariate equations

Fix an o.g. $(\mathcal{G}, \cdot, 1, <)$. Term (\mathcal{G}) : free product of \mathcal{G} and $(y^{\mathbb{Z}}, \cdot) \simeq (\mathbb{Z}, +)$. Simple task: given

$$t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \operatorname{Term}(\mathcal{G})$$

understand the theory of equations t(f) = 1 for f lying in extensions of G.

Remark. Given $\mathcal{G}' \supseteq \mathcal{G}$ and $f \in \mathcal{G}'$, the extension $\mathcal{G}\langle f \rangle / \mathcal{G}$ is determined by an ordering on the quotient group $\operatorname{Term}(\mathcal{G}) / N_f$ where

 $N_f = \{t(y): t(f) = 1\}.$

Examples:

- $t(y) = f^{-1} y^{-1} f y \longrightarrow$ centralizer extension
- $t(y) = f^{-2} y \longrightarrow$ extension with a "square root".
- $t(y) = y f y^{-1} g \longrightarrow$ conjugacy extension

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{1}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{2}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Divisible closure for prdered Abelian groups

There is a universal divisible extension $(\mathcal{G}, \cdot, 1, <) \longrightarrow (\hat{\mathcal{G}}, \hat{\cdot}, \hat{1}, \hat{<}).$

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{3}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Divisible closure for prdered Abelian groups

There is a universal divisible extension $(\mathcal{G}, \cdot, 1, <) \longrightarrow (\hat{\mathcal{G}}, \hat{\cdot}, \hat{1}, \hat{<}).$

A classical result

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian ordered groups. It has QE and is o-minimal.

Assume $(\mathcal{G}, \cdot, 1)$ is Abelian. For f in an Abelian o.g. extension of \mathcal{G} , and $t(y) = g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} \in \text{Term}(\mathcal{G})$, we have t(f) = 1 if and only if

$$f^n = g \tag{4}$$

where $\alpha := \sum_{i=1}^{n} \alpha_i \in \mathbb{Z}$ and $g := g_n^{-1} \cdots g_1^{-1} \in \mathcal{G}$.

Divisible closure for prdered Abelian groups

There is a universal divisible extension $(\mathcal{G}, \cdot, 1, <) \longrightarrow (\hat{\mathcal{G}}, \hat{\cdot}, \hat{1}, \hat{<}).$

A classical result

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian ordered groups. It has QE and is o-minimal.

In the non-Abelian case, solving

$$g_1 y^{\alpha_1} \cdots g_n y^{\alpha_n} = 1$$

in extensions of \mathcal{G} is highly non-trivial (recall the functional representation of \mathcal{G} ...).

Elementary property of an ordered group ${\cal G}$

A) [Levi, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Elementary property of an ordered group ${\cal G}$

A) [Levi, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question 4. Is any ordered group contained in a divisible one?

Elementary property of an ordered group ${\cal G}$

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question 7. Is any ordered group contained in a divisible one?

[BLUDOV, 2002] Yes if it is metabelian.

[BLUDOV, 2005] No, in general.

Elementary property of an ordered group ${\cal G}$

A) [Levi, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question 10. Is any ordered group contained in a divisible one?

[BLUDOV, 2002] Yes if it is metabelian.

[BLUDOV, 2005] No, in general.

Question 11. Is there an ordered group in which any two strictly positive elements are conjugate?

Elementary property of an ordered group \mathcal{G}

A) [LEVI, 1942] for m > 0, $f^m = g^m \Longrightarrow f = g$.

B) [NEUMANN, 1949] for m, n > 0, $[f^m, g^n] = 1 \Longrightarrow [f, g] = 1$.

Question 13. Is any ordered group contained in a divisible one?

[BLUDOV, 2002] Yes if it is metabelian.

[BLUDOV, 2005] No, in general.

Question 14. Is there an ordered group in which any two strictly positive elements are conjugate?

Question 15. Is there a first-order theory of ordered groups which is complete and model complete, and has non-Abelian models? **[PILLAY-STEINHORN, 1986]**: such theory is not o-minimal.

An orderable group is a group $(\mathcal{G},\cdot,1)$ which can be ordered.

An orderable group is a group $(\mathcal{G}, \cdot, 1)$ which can be ordered.

Theorem [LEVI, 1942]

Every nilpotent torsion-free group is orderable.

An orderable group is a group $(\mathcal{G}, \cdot, 1)$ which can be ordered.

Theorem [LEVI, 1942]

Every nilpotent torsion-free group is orderable.

Since orderable groups are closed under subgroups, isomorphism and ultrapowers, they form an elementary class in the first-order language $\langle \cdot, 1 \rangle$.

[BLUDOV, 2002] This class is not finitely axiomatizable.

An orderable group is a group $(\mathcal{G}, \cdot, 1)$ which can be ordered.

Theorem [LEVI, 1942]

Every nilpotent torsion-free group is orderable.

Since orderable groups are closed under subgroups, isomorphism and ultrapowers, they form an elementary class in the first-order language $\langle \cdot, 1 \rangle$.

[BLUDOV, 2002] This class is not finitely axiomatizable.

So any elementary class of ordered groups in $\langle\cdot,1,<\rangle$ induces an elementary class in $\langle\cdot,<\rangle$ of thus orderable groups.

In the 40's, TARSKI aksed whether free groups have the same first-order theory, and if so, whether this theory is decidable.

In the 40's, TARSKI aksed whether free groups have the same first-order theory, and if so, whether this theory is decidable.

Both answers are positive [SELA, 2006] and [KHARLAMPOVICH-MYASNIKOV, 2006].

In the 40's, TARSKI aksed whether free groups have the same first-order theory, and if so, whether this theory is decidable.

Both answers are positive [SELA, 2006] and [KHARLAMPOVICH-MYASNIKOV, 2006].

Free groups can always be ordered [Iwasawa, 1948], and:

Theorem [VINOGRADOV, 1949]

The free product of a family of groups can be ordered in such a way as to preserve the ordering on each member of the family.

In the 40's, TARSKI aksed whether free groups have the same first-order theory, and if so, whether this theory is decidable.

Both answers are positive [SELA, 2006] and [KHARLAMPOVICH-MYASNIKOV, 2006].

Free groups can always be ordered [Iwasawa, 1948], and:

Theorem [VINOGRADOV, 1949]

The free product of a family of groups can be ordered in such a way as to preserve the ordering on each member of the family.

Theorem [Iwasawa, 1948]

For every ordered group \mathcal{G} , there is a an ordering on a free-group L and a convex normal subgroup $N \leq L$ such that $\mathcal{G} \simeq L/N$.

Let $\mathcal{M} = (M, <, \dots)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

Example. \mathcal{G} : ordered group. R: real-closed field. \mathbb{R}_{exp} : real exponential field.

• For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.

Let $\mathcal{M} = (M, <, ...)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

- For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.
- $\mathcal{M} = (G, +, <)$ is a divisible ordered Abelian group, then $\mathcal{G}_{\mathcal{M}} \subseteq \operatorname{Aff}_{\mathbb{Q}}^+(G)$.

Let $\mathcal{M} = (M, <, \dots)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

- For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.
- $\mathcal{M} = (G, +, <)$ is a divisible ordered Abelian group, then $\mathcal{G}_{\mathcal{M}} \subseteq \operatorname{Aff}_{\mathbb{Q}}^+(G)$.
- For $\mathcal{M} = (R, <, +, \cdot)$, we have $\mathcal{G}_{\mathcal{M}} \supseteq \operatorname{Aff}_{R}^{+}(R)$. Moreover $\mathcal{H}_{\mathcal{M}}$ has a structure of differential field [VDDRIES, 1998].

Let $\mathcal{M} = (M, <, \dots)$ be an o-minimal structure.

Write $\mathcal{H}_{\mathcal{M}}$ for the set of germs [f] at $+\infty$ of definable maps $f: M \longrightarrow M$. We have $\mathcal{M} \preccurlyeq \mathcal{H}_{\mathcal{M}}$ for a natural "asymptotic" structure on $\mathcal{H}_{\mathcal{M}}$. We set:

$$\mathcal{G}_{\mathcal{M}} := \{ [f] \in \mathcal{H}_{\mathcal{M}} : [f] > M \} = \left\{ [f] : \lim_{+\infty} f = +\infty \right\}.$$

 $\mathcal{G}_{\mathcal{M}}$ is closed under composition $[f] \circ [g] = [f \circ g]$, and $(\mathcal{G}, \circ, [\mathrm{id}_M], <)$ is an ordered group.

- For $\mathcal{M} = (\mathcal{G}, <, (\operatorname{left}_g)_{g \in \mathcal{G}})$, we have $\mathcal{G}_{\mathcal{M}} \simeq \mathcal{G}$.
- $\mathcal{M} = (G, +, <)$ is a divisible ordered Abelian group, then $\mathcal{G}_{\mathcal{M}} \subseteq \operatorname{Aff}_{\mathbb{Q}}^+(G)$.
- For M = (R, <, +, ·), we have G_M ⊇ Aff⁺(R). Moreover H_M has a structure of differential field [vDDRIES, 1998].
- The field $\mathcal{H}_{\mathbb{R}_{exp}}$ contains all germs of functions that can be obtained as combinations of exp, log, and semialgebraic functions.

A growth axiom

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

fg > gf

to be solved in G?

A growth axiom

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

 $fg > g\,f$

to be solved in G?

In $\mathcal{G}_{\mathbb{R}_{exp}}$, if f grows much faster than g, then $f \circ g$ intuitively grows faster than $g \circ f$.
A growth axiom

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

fg > gf

to be solved in G?

In $\mathcal{G}_{\mathbb{R}_{exp}}$, if f grows much faster than g, then $f \circ g$ intuitively grows faster than $g \circ f$.

How "much faster" must f grow? First of all, we should have $f > g \circ g \circ \cdots \circ g$ for all finite iterations.

A growth axiom

A simple inequation

Let \mathcal{G} be an ordered group and let $f, g \in \mathcal{G}$ with f, g > 1. How is the inequation

 $fg > g\,f$

to be solved in G?

In $\mathcal{G}_{\mathbb{R}_{exp}}$, if f grows much faster than g, then $f \circ g$ intuitively grows faster than $g \circ f$. How "much faster" must f grow? First of all, we should have $f > g \circ g \circ \cdots \circ g$ for all finite iterations.

More precisely, we should have f > C(g), where

$$\mathcal{C}(g) = \{h \in \mathcal{G}_{\mathbb{R}_{\exp}} : h \circ g = g \circ h\}.$$

Consider the following axioms for an ordered group \mathcal{G} :

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > \mathcal{C}(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Second axiom: the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering which is compatible with <. The relation $f \asymp g$ if $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > \mathcal{C}(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Second axiom: the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering which is compatible with <. The relation $f \asymp g$ if $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said central if for all $f \asymp \mathfrak{u}$, there is a $\mathfrak{u}_f \in \mathcal{C}(\mathfrak{u})$ such that $f \mathfrak{u}_f^{-1} \prec f$.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Second axiom: the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering which is compatible with <. The relation $f \asymp g$ if $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said **central** if for all $f \asymp \mathfrak{u}$, there is a $\mathfrak{u}_f \in \mathcal{C}(\mathfrak{u})$ such that $f \mathfrak{u}_f^{-1} \prec f$. **GOG3.** For every $f \neq 1$, there is a central \mathfrak{u} with $\mathfrak{u} \asymp f$.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Second axiom: the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering which is compatible with <. The relation $f \asymp g$ if $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said **central** if for all $f \asymp \mathfrak{u}$, there is a $\mathfrak{u}_f \in \mathcal{C}(\mathfrak{u})$ such that $f \mathfrak{u}_f^{-1} \prec f$.

GOG3. For every $f \neq 1$, there is a central \mathfrak{u} with $\mathfrak{u} \asymp f$.

Definition: growth order group

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

All Abelian ordered groups are growth order groups.

Consider the following axioms for an ordered group \mathcal{G} :

GOG1. For all f, g > 1, we have $f > C(g) \Longrightarrow fg > gf$.

GOG2. For all f, g > 1 with f > g and all $g' \in \mathcal{C}(g)$, there is an $f' \in \mathcal{C}(f)$ with f' > g'.

Second axiom: the relation $g \prec f \iff C(g) < \max(f, f^{-1})$ is an ordering which is compatible with <. The relation $f \asymp g$ if $(f \not\prec g \text{ and } g \not\prec f)$ is a convex equivalence relation.

An element $\mathfrak{u} \in \mathcal{G} \setminus \{1\}$ is said **central** if for all $f \asymp \mathfrak{u}$, there is a $\mathfrak{u}_f \in \mathcal{C}(\mathfrak{u})$ such that $f \mathfrak{u}_f^{-1} \prec f$.

GOG3. For every $f \neq 1$, there is a central \mathfrak{u} with $\mathfrak{u} \asymp f$.

Definition: growth order group

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

All Abelian ordered groups are growth order groups.

Question 22. If \mathcal{M} expands the real ordered field, then must $\mathcal{G}_{\mathcal{M}}$ be a growth order group?

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential fields of formal series with composition laws:

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential fields of formal series with composition laws:

Take $\mathbb{R}(x)$ with $x > \mathbb{R}$. For $f, g \in \mathbb{R}(x)$ with $g > \mathbb{R}$, the derivative f' and the compositum $f \circ g$ are well-defined.

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential fields of formal series with composition laws:

Take $\mathbb{R}(x)$ with $x > \mathbb{R}$. For $f, g \in \mathbb{R}(x)$ with $g > \mathbb{R}$, the derivative f' and the compositum $f \circ g$ are well-defined.

These operations extend to the ordered field $\mathbb{R}[[x^{\mathbb{Z}}]] \supseteq \mathbb{R}(x)$ of formal Laurent series.

If
$$f = \sum_{k=n}^{-\infty} f_k x^k$$
, then $f \circ g := \sum_{k=n}^{-\infty} f_k g^k$ and $f' = \sum_{k=n}^{-\infty} k f_k x^{k-1}$.

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential fields of formal series with composition laws:

Take $\mathbb{R}(x)$ with $x > \mathbb{R}$. For $f, g \in \mathbb{R}(x)$ with $g > \mathbb{R}$, the derivative f' and the compositum $f \circ g$ are well-defined.

These operations extend to the ordered field $\mathbb{R}[[x^{\mathbb{Z}}]] \supseteq \mathbb{R}(x)$ of formal Laurent series.

If
$$f = \sum_{k=n}^{-\infty} f_k x^k$$
, then $f \circ g := \sum_{k=n}^{-\infty} f_k g^k$ and $f' = \sum_{k=n}^{-\infty} k f_k x^{k-1}$.

Problem: The ordered monoid $(\mathbb{R}[[x^{\mathbb{Z}}]]^{>\mathbb{R}}, x, o, <)$ is not a group. x^2 has no inverse

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential fields of formal series with composition laws:

Take $\mathbb{R}(x)$ with $x > \mathbb{R}$. For $f, g \in \mathbb{R}(x)$ with $g > \mathbb{R}$, the derivative f' and the compositum $f \circ g$ are well-defined.

These operations extend to the ordered field $\mathbb{R}[[x^{\mathbb{Z}}]] \supseteq \mathbb{R}(x)$ of formal Laurent series.

If
$$f = \sum_{k=n}^{-\infty} f_k x^k$$
, then $f \circ g := \sum_{k=n}^{-\infty} f_k g^k$ and $f' = \sum_{k=n}^{-\infty} k f_k x^{k-1}$.

Problem: The ordered monoid $(\mathbb{R}[[x^{\mathbb{Z}}]]^{>\mathbb{R}}, x, \circ, <)$ is not a group. x^2 has no inverse

The operations extend to the field \mathbb{P} of Puiseux series, and $(\mathbb{P}^{>\mathbb{R}}, \circ, x, <)$ is a growth order group.

- Is \mathbb{P} divisible?
- Are any two f, g > x conjugate in $\mathbb{P}^{>\mathbb{R}}$?
- Is $\mathbb P$ existentially closed among growth order groups?

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential fields of formal series with composition laws:

Take $\mathbb{R}(x)$ with $x > \mathbb{R}$. For $f, g \in \mathbb{R}(x)$ with $g > \mathbb{R}$, the derivative f' and the compositum $f \circ g$ are well-defined.

These operations extend to the ordered field $\mathbb{R}[[x^{\mathbb{Z}}]] \supseteq \mathbb{R}(x)$ of formal Laurent series.

If
$$f = \sum_{k=n}^{-\infty} f_k x^k$$
, then $f \circ g := \sum_{k=n}^{-\infty} f_k g^k$ and $f' = \sum_{k=n}^{-\infty} k f_k x^{k-1}$.

Problem: The ordered monoid $(\mathbb{R}[[x^{\mathbb{Z}}]]^{>\mathbb{R}}, x, \circ, <)$ is not a group. x^2 has no inverse

The operations extend to the field \mathbb{P} of Puiseux series, and $(\mathbb{P}^{>\mathbb{R}}, \circ, x, <)$ is a growth order group.

- Is \mathbb{P} divisible? No, since x^2 has no functional square root.
- Are any two f, g > x conjugate in $\mathbb{P}^{>\mathbb{R}}$? No, for instance 2x and x+1 are not conjugate.
- Is \mathbb{P} existentially closed among growth order groups? No, because...

Definition: generalized power series [HAHN, 1907]

Let $(\mathfrak{M},\cdot,1,\prec)$ be a linearly ordered abelian group. Then $\mathbb{R}[[\mathfrak{M}]]$ is an ordered field for the Cauchy product

$$\left(\sum_{\mathfrak{m}\in\mathfrak{M}}f(\mathfrak{m})\mathfrak{m}\right)\cdot\left(\sum_{\mathfrak{n}\in\mathfrak{M}}g(\mathfrak{n})\mathfrak{n}\right):=\sum_{\mathfrak{m},\mathfrak{n}\in\mathfrak{M}}f(\mathfrak{m})g(\mathfrak{n})(\mathfrak{m}\mathfrak{n}).$$

Definition: generalized power series [HAHN, 1907]

Let $(\mathfrak{M},\cdot,1,\prec)$ be a linearly ordered abelian group. Then $\mathbb{R}[[\mathfrak{M}]]$ is an ordered field for the Cauchy product

$$\left(\sum_{\mathfrak{m}\in\mathfrak{M}}f(\mathfrak{m})\,\mathfrak{m}\right)\cdot\left(\sum_{\mathfrak{n}\in\mathfrak{M}}g(\mathfrak{n})\,\mathfrak{n}\right):=\sum_{\mathfrak{m},\mathfrak{n}\in\mathfrak{M}}f(\mathfrak{m})\,g(\mathfrak{n})\,(\mathfrak{m}\,\mathfrak{n}).$$

Certain *infinite* families can be summed in $\mathbb{R}[[\mathfrak{M}]]$. We get a "formal Banach space":

- if ε is infinitesimal then $\sum_{n \in \mathbb{N}} (-1)^n \varepsilon^n = \frac{1}{1+\varepsilon}$.
- we have an implicit function theorem [VDHOEVEN, 2006]
- equations over R[[M]] with approximate solutions in R[[M]] sometime have exact solutions in R[[M]]

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Structure

 \mathbb{T}_{LE} enjoys a derivation $\partial : \mathbb{T} \longrightarrow \mathbb{T}$ that acts termwise, e.g.

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Structure

 \mathbb{T}_{LE} enjoys a derivation $\partial: \mathbb{T} \longrightarrow \mathbb{T}$ that acts termwise, e.g.

$$\partial f = \sum_{n=1}^{+\infty} (n-1)! e^{x/_n} + \frac{1}{x \log x} - 2x^{-3} \log x + x^{-3} + \sum_{p=0}^{+\infty} (p x^{p-1} - (p+1) x^p) e^{-x^{p+1}}$$

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Structure

 \mathbb{T} enjoys a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ that acts termwise on the right:

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Structure

 \mathbb{T} enjoys a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ that acts termwise on the right:

$$f \circ \log x = \sum_{n=1}^{+\infty} n! \, x^{1/n} + \log_3 x + 7 + (\log x)^{-2} \log_2 x + \sum_{p=0}^{+\infty} e^{-(\log x)^{p+1}} (\log x)^p.$$

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

Field \mathbb{T} of transseries: generalized series involving x, $\log x$ and e^x and combinations thereof.

$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p \quad is \ a \ transseries.$$

The number of iterations of exp and \log must be uniformly bounded.

Structure

 \mathbb{T} enjoys a composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ that acts termwise on the right:

$$f \circ \log x = \sum_{n=1}^{+\infty} n! x^{1/n} + \log_3 x + 7 + (\log x)^{-2} \log_2 x + \sum_{p=0}^{+\infty} e^{-(\log x)^{p+1}} (\log x)^p.$$

Remark: The elements 2x and x+1 are conjugate, via $(2x) \circ e^{(\log 2)x} = e^{(\log 2)x} \circ (x+1)$.

We now look at the sructure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

We now look at the sructure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

Proposition [B., 2022]

This is a growth order group.

We now look at the sructure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

Proposition [B., 2022]

This is a growth order group.

The group is not divisible since e^x has no square root. There is no "half exponential" which can be expressed as a combination of exponentials and logarithms. However:

Theorem [Edgar, 2018]

Any two f, g > x with $f, g \prec e^x$ are conjugate.

We now look at the sructure $(\mathbb{T}^{>\mathbb{R}}, x, \circ, <)$.

Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a right-ordered group, i.e for all f, g, h, $f > g \Rightarrow f \circ h > g \circ h$.

Proposition [B., 2022]

This is a growth order group.

The group is not divisible since e^x has no square root. There is no "half exponential" which can be expressed as a combination of exponentials and logarithms. However:

Theorem [Edgar, 2018]

Any two f, g > x with $f, g \prec e^x$ are conjugate.

Since $x + 1 \prec e^x$ and $f^{[n]} = x + 1$ has a solution $f = x + \frac{1}{n}$ for all $n \in \mathbb{N}^>$, we deduce that

$$\mathbb{T}_0^{>\mathbb{R}} := \{ f \in \mathbb{T}^{>\mathbb{R}} : f \prec e^x \}$$

is a divisible growth order group.

Conjucacy and Abel's equation

Goal: a group $\mathcal{G} \supseteq \mathbb{T}^{>\mathbb{R}}$ in which e^x is conjugate with x + 1. \rightarrow solve the conjugacy equation

$$y \circ (x+1) = e^x \circ y \tag{5}$$

in extensions of $(\mathbb{T}^{>\mathbb{R}}, \circ, x, <)$.

Goal: a group $\mathcal{G} \supseteq \mathbb{T}^{>\mathbb{R}}$ in which e^x is conjugate with x + 1. \rightarrow solve the conjugacy equation

$$y \circ (x+1) = e^x \circ y \tag{6}$$

in extensions of $(\mathbb{T}^{>\mathbb{R}}, \circ, x, <)$.

(6) is the formal version of ABEL's equation for the exponential function. [KNESER, 1949] There is a strictly increasing and analytic solution E of

 $\forall t \ge 0, E(t+1) = e^{E(t)}$

on \mathbb{R} . Its growth is transexponential: $E(t) > \exp \circ \exp \circ \cdots \circ \exp(t)$ for sufficiently large $t \in \mathbb{R}$.

Goal: a group $\mathcal{G} \supseteq \mathbb{T}^{>\mathbb{R}}$ in which e^x is conjugate with x + 1. \rightarrow solve the conjugacy equation

$$y \circ (x+1) = e^x \circ y \tag{7}$$

in extensions of $(\mathbb{T}^{>\mathbb{R}}, \circ, x, <)$.

(7) is the formal version of ABEL's equation for the exponential function. [KNESER, 1949] There is a strictly increasing and analytic solution E of

 $\forall t \ge 0, E(t+1) = e^{E(t)}$

on \mathbb{R} . Its growth is transexponential: $E(t) > \exp \circ \exp \circ \cdots \circ \exp(t)$ for sufficiently large $t \in \mathbb{R}$.

Question 25. Can an o-minimal expansion of $(\mathbb{R}, +, \times, <)$ define a transexponential function?

Goal: a group $\mathcal{G} \supseteq \mathbb{T}^{>\mathbb{R}}$ in which e^x is conjugate with x + 1. \rightarrow solve the conjugacy equation

$$y \circ (x+1) = e^x \circ y \tag{8}$$

in extensions of $(\mathbb{T}^{>\mathbb{R}}, \circ, x, <)$.

(8) is the formal version of ABEL's equation for the exponential function. [KNESER, 1949] There is a strictly increasing and analytic solution E of

 $\forall t \ge 0, E(t+1) = \mathrm{e}^{E(t)}$

on \mathbb{R} . Its growth is transexponential: $E(t) > \exp \circ \exp \circ \cdots \circ \exp(t)$ for sufficiently large $t \in \mathbb{R}$.

Question 26. Can an o-minimal expansion of $(\mathbb{R}, +, \times, <)$ define a transexponential function?

Proposition [vdDries-MACINTYRE-MARKER, 2001]

 $\mathcal{H}_{\mathbb{R}_{\exp}}$ embeds into $(\mathbb{T}, +, \times, <, \partial, \circ)$.

Can we construct differential fields \mathbb{H} with composition where (8) has solutions, and into which more general $\mathcal{H}_{\mathcal{M}}$ can be embedded?

[SCHMELING, 2001] defined an extension $\mathbb{H} \supseteq \mathbb{T}$ with formal symbols $e_{\omega^n}^x$, $\ell_{\omega^n} x$ for all $n \in \mathbb{N}$, where $e_1^x = e^x$ and

$$e_{\omega^n+1}^x \circ (x+1) = e_{\omega^n}^x \circ e_{\omega^n+1}(x)$$

$$e_{\omega^n}^x \circ (\ell_{\omega^n} x) = (\ell_{\omega^n} x) \circ e_{\omega^n}^x = x.$$
(9)

[SCHMELING, 2001] defined an extension $\mathbb{H} \supseteq \mathbb{T}$ with formal symbols $e^x_{\omega^n}$, $\ell_{\omega^n} x$ for all $n \in \mathbb{N}$, where $e^x_1 = e^x$ and

$$e_{\omega^{n+1}}^x \circ (x+1) = e_{\omega^n}^x \circ e_{\omega^{n+1}}(x)$$

$$e_{\omega^n}^x \circ (\ell_{\omega^n} x) = (\ell_{\omega^n} x) \circ e_{\omega^n}^x = x.$$
(10)

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

A differential ordered field with composition $(\mathbb{L}, +, \times, <, \partial, \circ)$ where for all $\mu \in \mathbf{On}$, we have a symbol $\ell_{\omega^{\mu}} x \in \mathbb{L}$ with $\ell_1 x = \log x$ and

$$(\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x) = (\ell_{\omega^{\mu+1}} x) - 1.$$

I.e. the inverse equations of (10) are valid. But $(\mathbb{L}^{>\mathbb{R}}, \circ, x)$ is not a group.

[SCHMELING, 2001] defined an extension $\mathbb{H} \supseteq \mathbb{T}$ with formal symbols $e^x_{\omega^n}$, $\ell_{\omega^n} x$ for all $n \in \mathbb{N}$, where $e^x_1 = e^x$ and

$$e_{\omega^n+1}^x \circ (x+1) = e_{\omega^n}^x \circ e_{\omega^n+1}(x)$$

$$e_{\omega^n}^x \circ (\ell_{\omega^n} x) = (\ell_{\omega^n} x) \circ e_{\omega^n}^x = x.$$
(11)

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

A differential ordered field with composition $(\mathbb{L}, +, \times, <, \partial, \circ)$ where for all $\mu \in \mathbf{On}$, we have a symbol $\ell_{\omega^{\mu}} x \in \mathbb{L}$ with $\ell_1 x = \log x$ and

$$(\ell_{\omega^{\mu+1}} x) \circ (\ell_{\omega^{\mu}} x) = (\ell_{\omega^{\mu+1}} x) - 1.$$

I.e. the inverse equations of (11) are valid. But $(\mathbb{L}^{>\mathbb{R}}, \circ, x)$ is not a group.

Finitely nested hyperseries [B.-VDHOEVEN-KAPLAN, 2021]

An extension $\tilde{\mathbb{L}} \supseteq \mathbb{L}$ where $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}} : s \mapsto (\ell_{\omega^{\mu}} x) \circ s$ is bijective and strictly increasing.

[SCHMELING, 2001] defined an extension $\mathbb{H} \supseteq \mathbb{T}$ with formal symbols $e_{\omega^n}^x$, $\ell_{\omega^n} x$ for all $n \in \mathbb{N}$, where $e_1^x = e^x$ and

$$e_{\omega^{n+1}}^{x} \circ (x+1) = e_{\omega^{n}}^{x} \circ e_{\omega^{n+1}}(x)$$

$$(12)$$

$$e_{\omega^{n}}^{x} \circ (\ell_{\omega^{n}} x) = (\ell_{\omega^{n}} x) \circ e_{\omega^{n}}^{x} = x.$$

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

e

A differential ordered field with composition $(\mathbb{L}, +, \times, <, \partial, \circ)$ where for all $\mu \in \mathbf{On}$, we have a symbol $\ell_{\omega^{\mu}} x \in \mathbb{L}$ with $\ell_1 x = \log x$ and

$$(\ell_{\omega^{\mu+1}}x) \circ (\ell_{\omega^{\mu}}x) = (\ell_{\omega^{\mu+1}}x) - 1.$$

I.e. the inverse equations of (12) are valid. But $(\mathbb{L}^{>\mathbb{R}}, \circ, x)$ is not a group.

Finitely nested hyperseries [B.-VDHOEVEN-KAPLAN, 2021]

An extension $\tilde{\mathbb{L}} \supseteq \mathbb{L}$ where $\tilde{\mathbb{L}}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{L}}^{>\mathbb{R}} : s \mapsto (\ell_{\omega^{\mu}} x) \circ s$ is bijective and strictly increasing.

Theorem [B., 2022]

The derivation ∂ and composition law \circ on \mathbb{L} extend in a natural way to \mathbb{L} .

Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure $(\mathbb{\tilde{L}}^{>\mathbb{R}}, \circ, x, <)$ is an ordered group.
Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure $(\mathbb{\tilde{L}}^{>\mathbb{R}}, \circ, x, <)$ is an ordered group.

In the group $\tilde{\mathbb{L}}^{>\mathbb{R}}$, all conjugacy equations can now be solved:

Theorem [B., 2022]		
Any two f, g in $\mathbb{\tilde{L}}^{>\mathbb{R}}$ with $f, g > x$ are conjugate.		

Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is an ordered group.

In the group $\tilde{\mathbb{L}}^{>\mathbb{R}}$, all conjugacy equations can now be solved:

Theorem [B., 2022]	*		
Any two f, g in $\mathbb{\tilde{L}}^{>\mathbb{R}}$ with $f, g > x$ are conjugate.			

Using this, one shows that:

Proposition [B., 2022]

The structure $(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ, x, <)$ is a growth order group.

So we have a GOG solution to our Question 14 on ordered groups.

[CONWAY, 1976] defined the class **No** of *surreal numbers*. It comes with a linear ordering < of magnitude, and a partial, well-founded ordering \square of *simplicity*.

[CONWAY, 1976] defined the class No of *surreal numbers*. It comes with a linear ordering < of magnitude, and a partial, well-founded ordering \square of *simplicity*.

Fundamental property: if $L, R \subseteq No$ are subsets with L < R, then there is a unique \Box -minimal number $\{L \mid R\}$ with $L < \{L \mid R\} < R$.

(And all numbers are constructed in this way.)

[CONWAY, 1976] defined the class No of *surreal numbers*. It comes with a linear ordering < of magnitude, and a partial, well-founded ordering \square of *simplicity*.

Fundamental property: if $L, R \subseteq No$ are subsets with L < R, then there is a unique \Box -minimal number $\{L \mid R\}$ with $L < \{L \mid R\} < R$.

(And all numbers are constructed in this way.)

Conway inductively defined field arithmetics on No. For $a = \{L_a \mid R_a\}$, $b = \{L_b \mid R_b\}$, we have

 $a+b = \{L_a+b, a+L_b \mid a+R_b, R_a+b\}.$

The ordered field $(No, +, \times, <)$ naturally contains the reals \mathbb{R} as well as the ordinals **On** with their Hessenberg (commutative) arithmetic.

[CONWAY, 1976] defined the class **No** of *surreal numbers*. It comes with a linear ordering < of magnitude, and a partial, well-founded ordering \square of *simplicity*.

Fundamental property: if $L, R \subseteq No$ are subsets with L < R, then there is a unique \Box -minimal number $\{L \mid R\}$ with $L < \{L \mid R\} < R$.

(And all numbers are constructed in this way.)

Conway inductively defined field arithmetics on No. For $a = \{L_a \mid R_a\}$, $b = \{L_b \mid R_b\}$, we have

 $a+b = \{L_a+b, a+L_b \mid a+R_b, R_a+b\}.$

The ordered field $(No, +, \times, <)$ naturally contains the reals \mathbb{R} as well as the ordinals **On** with their Hessenberg (commutative) arithmetic.

We have a simplest positive infinite number ω corresponding to the ordinal ω and the series x.

{sub-f-asymptotics(a), f-asymptotics(L) | f-asymptotics(R), sup-f-asymptotics(a)}

• We have numbers in $\mathbb{R}(\omega)$ for polynomial asymptotics.

- We have numbers in $\mathbb{R}(\omega)$ for polynomial asymptotics.
- [GONSHOR, 1986]: a natural exponential function on No with $\mathbb{R}_{exp} \preccurlyeq (No, +, \times, exp, <).$

- We have numbers in $\mathbb{R}(\omega)$ for polynomial asymptotics.
- [GONSHOR, 1986]: a natural exponential function on No with $\mathbb{R}_{exp} \preccurlyeq (No, +, \times, exp, <).$
- [B.-VDHOEVEN-MANTOVA, 2020]: a natural transexponential function E_{ω} on $\mathbf{No}^{>\mathbb{R}}$.

- We have numbers in $\mathbb{R}(\omega)$ for polynomial asymptotics.
- [GONSHOR, 1986]: a natural exponential function on No with $\mathbb{R}_{exp} \preccurlyeq (No, +, \times, exp, <).$
- [B.-vdHoeven-Mantova, 2020]: a natural transexponential function E_{ω} on $No^{>\mathbb{R}}$.
- [B.-VDHOEVEN, 2022]: functions $E_{\omega^{\mu}}$ and $L_{\omega^{\mu}}$ as in $\tilde{\mathbb{L}}$ on surreal numbers.

{sub-f-asymptotics(a), f-asymptotics(L) | f-asymptotics(R), sup-f-asymptotics(a)}

- We have numbers in $\mathbb{R}(\omega)$ for polynomial asymptotics.
- [GONSHOR, 1986]: a natural exponential function on No with $\mathbb{R}_{exp} \preccurlyeq (No, +, \times, exp, <).$
- [B.-VDHOEVEN-MANTOVA, 2020]: a natural transexponential function E_{ω} on $\mathbf{No}^{>\mathbb{R}}$.
- [B.-VDHOEVEN, 2022]: functions $E_{\omega^{\mu}}$ and $L_{\omega^{\mu}}$ as in $\tilde{\mathbb{L}}$ on surreal numbers.

[B.-vdHoeven, 2022]

There is a natural embedding of \mathbb{L} into **No**, and every surreal number can be represented as a (possibly infinitely nested) hyperseries in the same vein as elements of \mathbb{L} .

{sub-f-asymptotics(a), f-asymptotics(L) | f-asymptotics(R), sup-f-asymptotics(a)}

- We have numbers in $\mathbb{R}(\omega)$ for polynomial asymptotics.
- [GONSHOR, 1986]: a natural exponential function on No with $\mathbb{R}_{exp} \preccurlyeq (No, +, \times, exp, <).$
- [B.-VDHOEVEN-MANTOVA, 2020]: a natural transexponential function E_{ω} on $\mathbf{No}^{>\mathbb{R}}$.
- [B.-VDHOEVEN, 2022]: functions $E_{\omega^{\mu}}$ and $L_{\omega^{\mu}}$ as in $\tilde{\mathbb{L}}$ on surreal numbers.

[B.-VDHOEVEN, 2022]

There is a natural embedding of \mathbb{L} into **No**, and every surreal number can be represented as a (possibly infinitely nested) hyperseries in the same vein as elements of \mathbb{L} .

[Work in progress]

There is a natural extension \circ of the composition law on $\tilde{\mathbb{L}}$ to No.

 $(\mathbf{No}^{>\mathbb{R}}, \circ, \omega, <)$ is a growth order group with exactly three conjucacy classes.

Transfinite non-commutative products

Let \mathcal{G} be among $\mathbb{T}_0^{>\mathbb{R}}$, $\mathbb{\tilde{L}}^{>\mathbb{R}}$, and $\mathbf{No}^{>\mathbb{R}}$. For $g \in \mathcal{G} \setminus \{x\}$, we have a unique isomorphism

$$(\mathbb{R}, +, 0, <) \longrightarrow (\mathcal{C}(f), \circ, x, <)$$
$$r \longmapsto f^{[r]}$$

with $f^{[1]} = f$. Indeed this holds for $f = x \pm 1$, and is carried over by conjugacy.

Let \mathcal{G} be among $\mathbb{T}_0^{>\mathbb{R}}$, $\mathbb{\tilde{L}}^{>\mathbb{R}}$, and $\mathbf{No}^{>\mathbb{R}}$. For $g \in \mathcal{G} \setminus \{x\}$, we have a unique isomorphism

$$\begin{array}{rccc} (\mathbb{R},+,0,<) & \longrightarrow & (\mathcal{C}(f),\circ,x,<) \\ & r & \longmapsto & f^{[r]} \end{array}$$

with $f^{[1]} = f$. Indeed this holds for $f = x \pm 1$, and is carried over by conjugacy.

Using the $\{\cdot \mid \cdot\}$ operation, one can define, for all strictly \prec -decreasing ordinal indexed sequence $(\mathfrak{u}_{\gamma})_{\gamma < \alpha}$ of " \asymp -simple" elements of \mathcal{G} and sequences $(r_{\gamma})_{\gamma < \alpha} \in (\mathbb{R}^{\times})^{\alpha}$, a transfinite composition

$$\bigotimes_{\gamma < \alpha} \mathfrak{u}_{\gamma}^{[r_{\gamma}]} = \cdots \circ \mathfrak{u}_{\gamma}^{[r_{\gamma}]} \circ \cdots \circ \mathfrak{u}_{1}^{[r_{1}]} \circ \mathfrak{u}_{0}^{[r_{0}]}$$
(14)

Let \mathcal{G} be among $\mathbb{T}_0^{>\mathbb{R}}$, $\mathbb{\tilde{L}}^{>\mathbb{R}}$, and $\mathbf{No}^{>\mathbb{R}}$. For $g \in \mathcal{G} \setminus \{x\}$, we have a unique isomorphism

$$\begin{array}{rccc} (\mathbb{R},+,0,<) & \longrightarrow & (\mathcal{C}(f),\circ,x,<) \\ & r & \longmapsto & f^{[r]} \end{array}$$

with $f^{[1]} = f$. Indeed this holds for $f = x \pm 1$, and is carried over by conjugacy.

Using the $\{\cdot \mid \cdot\}$ operation, one can define, for all strictly \prec -decreasing ordinal indexed sequence $(\mathfrak{u}_{\gamma})_{\gamma < \alpha}$ of " \asymp -simple" elements of \mathcal{G} and sequences $(r_{\gamma})_{\gamma < \alpha} \in (\mathbb{R}^{\times})^{\alpha}$, a transfinite composition

$$\bigotimes_{\gamma < \alpha} \mathfrak{u}_{\gamma}^{[r_{\gamma}]} = \cdots \circ \mathfrak{u}_{\gamma}^{[r_{\gamma}]} \circ \cdots \circ \mathfrak{u}_{1}^{[r_{1}]} \circ \mathfrak{u}_{0}^{[r_{0}]}$$
(15)

[Work in progress]

Every element in \mathcal{G} can be expressed as in (15), in a unique way.

In this sense, the **GOG** (No^{> \mathbb{R}}, \circ , ω , <) is a non-commutative Hahn product No^{> $\mathbb{R}} \simeq \prod_{No} \mathbb{R}$.</sup>

Let \mathcal{G} be among $\mathbb{T}_0^{>\mathbb{R}}$, $\mathbb{\tilde{L}}^{>\mathbb{R}}$, and $\mathbf{No}^{>\mathbb{R}}$. For $g \in \mathcal{G} \setminus \{x\}$, we have a unique isomorphism

$$\begin{array}{rccc} (\mathbb{R},+,0,<) & \longrightarrow & (\mathcal{C}(f),\circ,x,<) \\ & r & \longmapsto & f^{[r]} \end{array}$$

with $f^{[1]} = f$. Indeed this holds for $f = x \pm 1$, and is carried over by conjugacy.

Using the $\{\cdot \mid \cdot\}$ operation, one can define, for all strictly \prec -decreasing ordinal indexed sequence $(\mathfrak{u}_{\gamma})_{\gamma < \alpha}$ of " \asymp -simple" elements of \mathcal{G} and sequences $(r_{\gamma})_{\gamma < \alpha} \in (\mathbb{R}^{\times})^{\alpha}$, a transfinite composition

$$\bigotimes_{\gamma < \alpha} \mathfrak{u}_{\gamma}^{[r_{\gamma}]} = \cdots \circ \mathfrak{u}_{\gamma}^{[r_{\gamma}]} \circ \cdots \circ \mathfrak{u}_{1}^{[r_{1}]} \circ \mathfrak{u}_{0}^{[r_{0}]}$$
(16)

[Work in progress]

Every element in \mathcal{G} can be expressed as in (16), in a unique way.

In this sense, the **GOG** (No^{> \mathbb{R}}, \circ , ω , <) is a non-commutative Hahn product No^{> $\mathbb{R}} \simeq \prod_{No} \mathbb{R}$.</sup>

Question 30. Can this be generalized? Can one define transfinite non-commutative products $\prod_{I} G_{i}$ of Abelian ordered groups G_{i} indexed by a linearly ordered set (I, <)?

Thank you!