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Ordered groups 2/22

An ordered group is a group (G ; �; 1) equipped with a linear ordering < with

f < g=) (h f <h g ^ f h< gh)

for all f ; g; h2G.

Ordered groups

A unary representation of G is an embedding t�: (G ; �; 1; <)¡! (Aut(X;<X); �; idX ; <8) for
some linearly ordered set X, where <8 is the ordering by universal comparison.

Unary representations

Natural example: (G ; <) itself with translations on the left, i.e. left�: g 7¡! (h 7! g h).

If (X;<) is dense or (X;t�;<X)=(G ; left�;<), then (X;(tg)g2G ;<) has QE and is o-minimal.

Theorem [BALZANOV-BALDWIN-VERBOVSKIY, 2007]
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Two examples 3/22

Each Abelian ordered group embeds in a Hahn ordered group

H[M;R] = ff 2RM : (supp f) := fx2M : f(x)=/ 0g is reverse well-ordered g

where (M;�) is a linearly ordered set. Each f is represented as a series f =
P

m2M f(m)m.

Abelian ordered groups and HAHN's embedding theorem

Let K be an ordered field. Let (G;+;<) be an ordered vector space over K. Then AffK
+(G) :=

K>�G is an ordered group for the product (a; �) � (b; �) := (a b; a:�+�) and the lexico-
graphic ordering.

Strictly increasing affine maps

We can represent each (a;�) as the strictly increasing affine map Affa;�: 
 7!a:
+�, and the
ordering is then (a; �)< (b; �) iff Affa;�(
)<Affb;�(
) for sufficiently large 
 2G.



Two examples 3/22

Each Abelian ordered group embeds in a Hahn ordered group

H[M;R] = ff 2RM : (supp f) := fx2M : f(x)=/ 0g is reverse well-ordered g

where (M;�) is a linearly ordered set. Each f is represented as a series f =
P

m2M f(m)m.

Abelian ordered groups and HAHN's embedding theorem

Let K be an ordered field. Let (G;+;<) be an ordered vector space over K. Then AffK
+(G) :=

K>�G is an ordered group for the product (a; �) � (b; �) := (a b; a:�+�) and the lexico-
graphic ordering.

Strictly increasing affine maps

We can represent each (a;�) as the strictly increasing affine map Affa;�: 
 7!a:
+�, and the
ordering is then (a; �)< (b; �) iff Affa;�(
)<Affb;�(
) for sufficiently large 
 2G.



Univariate equations 4/22

Fix an o.g. (G ; �; 1; <). Term(G): free product of G and (yZ; �)' (Z;+).

Simple task: given

t(y)= g1 y
�1 � � � gn y�n2Term(G)

understand the theory of equations t(f)=1 for f lying in extensions of G.

Remark. Given G 0�G and f 2G 0, the extension Ghf i/G is determined by an ordering on the
quotient group Term(G)/Nf where

Nf = ft(y) : t(f)= 1g:

Examples:

� t(y)= f¡1 y¡1 f y ¡! centralizer extension

� t(y)= f¡2 y ¡! extension with a �square root�.

� t(y)= y f y¡1 g ¡! conjugacy extension
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Abelian and non-Abelian ordered groups 5/22

Assume (G ; �;1) is Abelian. For f in an Abelian o.g. extension of G, and t(y)= g1 y
�1 ��� gny�n2

Term(G), we have t(f)= 1 if and only if

fn= g (1)

where � :=
P

i=1
n �i2Z and g := gn

¡1 � � � g1¡12G.

There is a universal divisible extension (G ; �; 1; <)¡! (Ĝ ; �̂ ; 1̂; <̂).

Divisible closure for prdered Abelian groups

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian
ordered groups. It has QE and is o-minimal.

A classical result

In the non-Abelian case, solving

g1 y
�1 � � � gn y�n=1

in extensions of G is highly non-trivial (recall the functional representation of G . . . ).
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Divisibility, conjugacy, problems 6/22

A) [LEVI, 1942] for m> 0, fm= gm=) f = g.

B) [NEUMANN, 1949] for m;n> 0, [fm; gn] = 1=) [f ; g] = 1.

Elementary property of an ordered group G

Question 1. Is any ordered group contained in a divisible one?

[BLUDOV, 2002] Yes if it is metabelian.

[BLUDOV, 2005] No, in general.

Question 2. Is there an ordered group in which any two strictly positive elements are conjugate?

Question 3. Is there a first-order theory of ordered groups which is complete and model com-
plete, and has non-Abelian models? [PILLAY-STEINHORN, 1986]: such theory is not o-minimal.
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Orderability 7/22

An ooooooooorrrrrrrrrdddddddddeeeeeeeeerrrrrrrrraaaaaaaaabbbbbbbbbllllllllleeeeeeeee gggggggggrrrrrrrrrooooooooouuuuuuuuuppppppppp is a group (G ; �; 1) which can be ordered.

Every nilpotent torsion-free group is orderable.

Theorem [LEVI, 1942]

Since orderable groups are closed under subgroups, isomorphism and ultrapowers, they form an
elementary class in the first-order language h�; 1i.

[BLUDOV, 2002] This class is not finitely axiomatizable.

So any elementary class of ordered groups in h�; 1; <i induces an elementary class in h�; <i of
thus orderable groups.
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Miscellany about free groups 8/22

In the 40's, TARSKI aksed whether free groups have the same first-order theory, and if so, whether
this theory is decidable.

Both answers are positive [SELA, 2006] and [KHARLAMPOVICH-MYASNIKOV, 2006].

Free groups can always be ordered [Iwasawa, 1948], and:

The free product of a family of groups can be ordered in such a way as to preserve the ordering
on each member of the family.

Theorem [VINOGRADOV, 1949]

For every ordered group G, there is a an ordering on a free-group L and a convex normal
subgroup N PL such that G 'L/N.

Theorem [Iwasawa, 1948]
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Ordered groups from o-minimal structures 9/22

Let M=(M;<; : : : ) be an o-minimal structure.

Write HM for the set of germs [f ] at +1 of definable maps f :M ¡!M . We haveM4HM
for a natural �asymptotic� structure on HM. We set:

GM := f[f ]2HM : [f ]>M g=
n
[f ] : lim

+1
f =+1

o
:

GM is closed under composition [f ] � [g] = [f � g], and (G ; �; [idM]; <) is an ordered group.

Example. G: ordered group. R: real-closed field. Rexp: real exponential field.
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� M=(G;+; <) is a divisible ordered Abelian group, then GM�AffQ
+(G).

� ForM=(R;<;+; �), we have GM!Aff+(R). Moreover HM has a structure of differential
field [VDDRIES, 1998].

� The field HRexp contains all germs of functions that can be obtained as combinations of
exp, log, and semialgebraic functions.



A growth axiom 10/22

Let G be an ordered group and let f ; g 2G with f ; g > 1. How is the inequation

f g > g f

to be solved in G?

A simple inequation

In GRexp, if f grows much faster than g, then f � g intuitively grows faster than g � f .

How �much faster� must f grow? First of all, we should have f > g � g � � � � � g for all finite
iterations.

More precisely, we should have f > C(g), where

C(g)= fh2GRexp :h � g= g �hg:
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Growth order groups 11/22

Consider the following axioms for an ordered group G:

GOG1. For all f ; g > 1, we have f > C(g)=) f g > g f .

GOG2. For all f ; g > 1 with f > g and all g 02C(g), there is an f 02C(f) with f 0> g 0.

Second axiom: the relation g� f()C(g)<max (f ; f¡1) is an ordering which is compatible
with <. The relation f � g if (f � g and g � f) is a convex equivalence relation.

An element u2G nf1g is said central if for all f �u, there is a uf 2C(u) such that f uf
¡1� f .

GOG3. For every f =/ 1, there is a central u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

All Abelian ordered groups are growth order groups.

Question 16. If M expands the real ordered field, then must GM be a growth order group?
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GOG3. For every f =/ 1, there is a central u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

All Abelian ordered groups are growth order groups.

Question 18. If M expands the real ordered field, then must GM be a growth order group?
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GOG1. For all f ; g > 1, we have f > C(g)=) f g > g f .

GOG2. For all f ; g > 1 with f > g and all g 02C(g), there is an f 02C(f) with f 0> g 0.
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An element u2G nf1g is said central if for all f �u, there is a uf 2C(u) such that f uf
¡1� f .

GOG3. For every f =/ 1, there is a central u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

All Abelian ordered groups are growth order groups.

Question 19. If M expands the real ordered field, then must GM be a growth order group?
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Consider the following axioms for an ordered group G:

GOG1. For all f ; g > 1, we have f > C(g)=) f g > g f .

GOG2. For all f ; g > 1 with f > g and all g 02C(g), there is an f 02C(f) with f 0> g 0.

Second axiom: the relation g� f()C(g)<max (f ; f¡1) is an ordering which is compatible
with <. The relation f � g if (f � g and g � f) is a convex equivalence relation.

An element u2G nf1g is said central if for all f �u, there is a uf 2C(u) such that f uf
¡1� f .

GOG3. For every f =/ 1, there is a central u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

All Abelian ordered groups are growth order groups.

Question 20. If M expands the real ordered field, then must GM be a growth order group?
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GOG3. For every f =/ 1, there is a central u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

All Abelian ordered groups are growth order groups.

Question 21. If M expands the real ordered field, then must GM be a growth order group?
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Consider the following axioms for an ordered group G:

GOG1. For all f ; g > 1, we have f > C(g)=) f g > g f .

GOG2. For all f ; g > 1 with f > g and all g 02C(g), there is an f 02C(f) with f 0> g 0.

Second axiom: the relation g� f()C(g)<max (f ; f¡1) is an ordering which is compatible
with <. The relation f � g if (f � g and g � f) is a convex equivalence relation.

An element u2G nf1g is said central if for all f �u, there is a uf 2C(u) such that f uf
¡1� f .

GOG3. For every f =/ 1, there is a central u with u� f .

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

Definition: growth order group

All Abelian ordered groups are growth order groups.

Question 22. If M expands the real ordered field, then must GM be a growth order group?



Differential fields of series and GOG 12/22

Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential
fields of formal series with composition laws:

Take R(x) with x >R. For f ; g 2R(x) with g >R, the derivative f 0 and the compositum
f � g are well-defined.

These operations extend to the ordered field R[[xZ]]!R(x) of formal Laurent series.

If f =
X
k=n

¡1

fkx
k, then f � g :=

X
k=n

¡1

fk g
k and f 0=

X
k=n

¡1

k fkx
k¡1.

Problem: The ordered monoid (R[[xZ]]>R; x; �; <) is not a group. x2 has no inverse

The operations extend to the field P of Puiseux series, and (P>R; �; x; <) is a growth order
group.

� Is P divisible?

� Are any two f ; g >x conjugate in P>R?

� Is P existentially closed among growth order groups?
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Idea: obtain GOG closed under certain equations t(y) = 1 by constructing ordered differential
fields of formal series with composition laws:

Take R(x) with x >R. For f ; g 2R(x) with g >R, the derivative f 0 and the compositum
f � g are well-defined.

These operations extend to the ordered field R[[xZ]]!R(x) of formal Laurent series.

If f =
X
k=n

¡1

fkx
k, then f � g :=

X
k=n

¡1

fk g
k and f 0=

X
k=n

¡1

k fkx
k¡1.

Problem: The ordered monoid (R[[xZ]]>R; x; �; <) is not a group. x2 has no inverse

The operations extend to the field P of Puiseux series, and (P>R; �; x; <) is a growth order
group.

� Is P divisible? No, since x2 has no functional square root.

� Are any two f ; g >x conjugate in P>R? No, for instance 2x and x+1 are not conjugate.

� Is P existentially closed among growth order groups? No, because . . .



Generalized power series 13/22

Let (M; �; 1;�) be a linearly ordered abelian group. Then R[[M]] is an ordered field for the
Cauchy product X

m2M
f(m)m

!
�
 X

n2M
g(n) n

!
:=

X
m;n2M

f(m) g(n) (mn):

Definition: generalized power series [HAHN, 1907]
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Let (M; �; 1;�) be a linearly ordered abelian group. Then R[[M]] is an ordered field for the
Cauchy product X

m2M
f(m)m

!
�
 X

n2M
g(n) n

!
:=

X
m;n2M

f(m) g(n) (mn):

Definition: generalized power series [HAHN, 1907]

Certain infinite families can be summed in R[[M]]. We get a �formal Banach space�:

� if " is infinitesimal then
P

n2N (¡1)
n "n= 1

1+ "
.

� we have an implicit function theorem [VDHOEVEN, 2006]

� equations over R[[M]] with approximate solutions in R[[M]] sometime have exact solutions
in R[[M]]



Transseries 14/22

Field T of tttttttttrrrrrrrrraaaaaaaaannnnnnnnnsssssssssssssssssseeeeeeeeerrrrrrrrriiiiiiiiieeeeeeeeesssssssss: generalized series involving x, logx and ex and combinations thereof.

f :=
X
n=1

+1

n! e /
x
n+log2x+7+x¡2 log x+

X
p=0

+1

e¡x
p+1

xp is a transseries:

The number of iterations of exp and log must be uniformly bounded.

Transseries [DAHN-GÖRING, 1987 and ECALLE, 1992]

TLE enjoys a dddddddddeeeeeeeeerrrrrrrrriiiiiiiiivvvvvvvvvaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn @:T¡!T that acts termwise, e.g.

@f =
X
n=1

+1

(n¡ 1)! e /x n+ 1
x log x

¡ 2x¡3 log x+x¡3+
X
p=0

+1

(pxp¡1¡ (p+1)xp) e¡xp+1

Structure

Remark: The elements 2x and x+1 are conjugate, via (2x) � e(log2)x=e(log2)x � (x+1).
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Structure
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Conjugacy in transseries 15/22

We now look at the sructure (T>R; x; �; <).

This is a right-ordered group, i.e for all f ; g; h, f > g) f �h> g �h.
Theorem [VDDRIES-MACINTYRE-MARKER, 2001]

This is a growth order group.

Proposition [B., 2022]

The group is not divisible since ex has no square root. There is no �half exponential� which can
be expressed as a combination of exponentials and logarithms. However:

Any two f ; g >x with f ; g� ex are conjugate.

Theorem [Edgar, 2018]

Since x+1� ex and f [n]=x+1 has a solution f =x+ 1

n
for all n2N>, we deduce that

T0
>R := ff 2T>R : f � exg

is a divisible growth order group.
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Conjucacy and Abel's equation 16/22

Goal: a group G �T>R in which ex is conjugate with x+1. ! solve the conjugacy equation

y � (x+1)= ex � y (5)

in extensions of (T>R; �; x;<).

(5) is the formal version of ABEL's equation for the exponential function. [KNESER, 1949] There
is a strictly increasing and analytic solution E of

8t> 0; E(t+1)= eE(t)

on R. Its growth is transexponential: E(t)> exp � exp � � � � � exp(t) for sufficiently large t2R.

Question 23. Can an o-minimal expansion of (R;+;�;<) define a transexponential function?

HRexp embeds into (T;+;�; <; @; �).
Proposition [vdDries-MACINTYRE-MARKER, 2001]

Can we construct differential fields H with composition where (5) has solutions, and into which
more general HM can be embedded?
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Hyperseries 17/22

[SCHMELING, 2001] defined an extension H!T with formal symbols e!nx ; `!nx for all n2N,
where e1x=ex and

e!n+1
x � (x+1) = e!nx � e!n+1(x) (9)

e!nx � (`!nx)= (`!nx) � e!nx = x:

A differential ordered field with composition (L;+;�; <; @; �) where for all �2On, we have
a symbol `!�x2L with `1x= log x and

(`!�+1x) � (`!�x)= (`!�+1x)¡ 1:

I.e. the inverse equations of (9) are valid. But (L>R; �; x) is not a group.

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

An extension L~ �L where L~ >R¡!L~ >R: s 7! (`!�x) � s is bijective and strictly increasing.

Finitely nested hyperseries [B.-VDHOEVEN-KAPLAN, 2021]

The derivation @ and composition law � on L extend in a natural way to L~ .

Theorem [B., 2022]
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Conjugacy in hyperseries 18/22

Using Taylor series arguments, one shows that:

The structure (L~ >R; �; x;<) is an ordered group.

Proposition [B., 2022]

In the group L~ >R, all conjugacy equations can now be solved:

Any two f ; g in L~ >R with f ; g >x are conjugate.

Theorem [B., 2022]

Using this, one shows that:

The structure (L~ >R; �; x;<) is a growth order group.

Proposition [B., 2022]

So we have a GOG solution to our Question 14 on ordered groups.
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Surreal numbers 19/22

[CONWAY, 1976] defined the class No of surreal numbers. It comes with a linear ordering <
of magnitude, and a partial, well-founded ordering @ of simplicity .

Fundamental property: if L;R�No are subsets with L<R, then there is a unique @-minimal
number fL j Rg with L< fL j Rg<R.

(And all numbers are constructed in this way.)

Conway inductively defined field arithmetics on No. For a=fLa j Rag, b=fLb j Rbg, we have

a+ b= fLa+ b; a+Lb j a+Rb; Ra+ bg:

The ordered field (No;+;�; <) naturally contains the reals R as well as the ordinals On with
their Hessenberg (commutative) arithmetic.

We have a simplest positive infinite number ! corresponding to the ordinal ! and the series x.
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Numbers as hyperseries 20/22

Idea: in No, asymptotics can be brought to life; for a regular growth rate f :R¡!R and
a= fL j Rg2No>R, define f(a) as the number

fsub-f -asymptotics(a); f -asymptotics(L) j f -asymptotics(R); sup-f -asymptotics(a)g

� We have numbers in R(!) for polynomial asymptotics.

� [GONSHOR, 1986]: a natural exponential function on No with Rexp4 (No;+;�; exp;<).

� [B.-VDHOEVEN-MANTOVA, 2020]: a natural transexponential function E! on No>R.

� [B.-VDHOEVEN, 2022]: functions E!� and L!� as in L~ on surreal numbers.

There is a natural embedding of L~ into No, and every surreal number can be represented as
a (possibly infinitely nested) hyperseries in the same vein as elements of L~ .

[B.-VDHOEVEN, 2022]

There is a natural extension � of the composition law on L~ to No.

(No>R; �; !;<) is a growth order group with exactly three conjucacy classes.

[Work in progress]
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Transfinite non-commutative products 21/22

Let G be among T0
>R, L~ >R, and No>R. For g 2G n fxg, we have a unique isomorphism

(R;+; 0; <) ¡! (C(f); �; x;<)
r 7¡! f [r]

with f [1]= f . Indeed this holds for f =x� 1, and is carried over by conjugacy.

Using the f� j �g operation, one can define, for all strictly �-decreasing ordinal indexed sequence
(u
)
<� of ��-simple� elements of G and sequences (r
)
<�2 (R�)�, a transfinite compositionK


<�

u

[r
] = � � � � u


[r
] � � � � � u1
[r1] � u0

[r0] (13)

Every element in G can be expressed as in (13), in a unique way.

[Work in progress]

In this sense, the GOG (No>R;�; !;<) is a non-commutative Hahn product No>R'
Q

NoR.

Question 27. Can this be generalized? Can one define transfinite non-commutative productsQ
IGi of Abelian ordered groups Gi indexed by a linearly ordered set (I ;<)?
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In this sense, the GOG (No>R;�; !;<) is a non-commutative Hahn product No>R'
Q

NoR.

Question 30. Can this be generalized? Can one define transfinite non-commutative productsQ
IGi of Abelian ordered groups Gi indexed by a linearly ordered set (I ;<)?



Thank you!


