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feg—hrlf-hagr th-ol)

forall f,g,heq.

Unary representations

A unary representation of G is an embedding t.: (G,-, 1, <) — (Aut(X, <x),0,idx, <v) for
some linearly ordered set X, where < is the ordering by universal comparison.

Natural example: (G, <) itself with translations on the left, i.e. left.: g— (h+— gh).

Theorem [BALzANOV-BALDWIN-VERBOVSKIY, 2007]

If (X,<)isdenseor (X,t..<x)=(G,left.,<), then (X, (t;)qeq,<) has QE and is o-minimal.
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where (I, <) is a linearly ordered set. Each f is represented as a series f=3 " .. f(m)m.
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Abelian ordered groups and HAHN's embedding theorem

Each Abelian ordered group embeds in a Hahn ordered group

HM R]={f€R™: (supp f):={zx e M: f(x) #0} is reverse well-ordered }

where (I, <) is a linearly ordered set. Each f is represented as a series f=3 " .. f(m)m.

Strictly increasing affine maps

Let KX be an ordered field. Let (G, +,<) be an ordered vector space over IX. Then Aff;5((G):=
K~ x G is an ordered group for the product (a,«)- (b, B):=(ab,a.0+ «) and the lexico-

graphic ordering.

We can represent each (a, «) as the strictly increasing affine map Aff, ,:v+—a.v+a, and the
ordering is then (a, ) < (b, B) iff Aff, o(v) < Affy () for sufficiently large v € G.
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Fix an o.g. (G,-,1,<). Term(G): free product of G and (y2,-) ~(Z,+).

Simple task: given
A= e e e e AT i)

understand the theory of equations ¢(f) =1 for f lying in extensions of G.

Remark. Given G’ D G and f € G’, the extension G(f) /G is determined by an ordering on the
quotient group Term(G) / Ny where

Ny ={t(y):t(f)=1}.

Examples:
o iy —f Yy Ly e centralizer extension
¢ 1l - ——  extension with a “square root”.

o t(y)=yfy g —  conjugacy extension
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Abelian and non-Abelian ordered groups

Assume (G, -, 1) is Abelian. For f in an Abelian o.g. extension of G, and t(y) = g1 y*' -+~ g,y €
Term(G), we have t(f) =1 if and only if

ff=g (4)

where a:=3Y""  a; €Z and Gi=ge o gr e

Divisible closure for prdered Abelian groups

There is a universal divisible extension (G, -, 1, <) — (C;, )

A classical result

The theory of divisible Abelian ordered groups is the model-completion of the theory of Abelian
ordered groups. It has QE and is o-minimal.

In the non-Abelian case, solving
Y gn gt = |

in extensions of G is highly non-trivial (recall the functional representation of G...).
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Divisibility, conjugacy, problems

Elementary property of an ordered group G

A) [Levi, 1942] for m >0, f"=¢" = f=g.
B) [NEuMANN, 1949] for m,n >0, [f", ¢"|=1=[f,g]=1.

Question 13. Is any ordered group contained in a divisible one?

[BLubov, 2002] Yes if it is metabelian.

[BLubov, 2005] No, in general.
Question 14. Is there an ordered group in which any two strictly positive elements are conjugate?

Question 15. Is there a first-order theory of ordered groups which is complete and model
complete, and has non-Abelian models? [PiLLAY-STEINHORN, 1986]: such theory is not o-
minimal.
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Orderability

An orderable group is a group (G, -, 1) which can be ordered.

Theorem [Levi, 1942]

Every nilpotent torsion-free group is orderable.

Since orderable groups are closed under subgroups, isomorphism and ultrapowers, they form an
elementary class in the first-order language (-, 1).

[BLubov, 2002] This class is not finitely axiomatizable.

So any elementary class of ordered groups in (-, 1, <) induces an elementary class in (-, <) of
thus orderable groups.
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In the 40’s, TARSKI aksed whether free groups have the same first-order theory, and if so, whether
this theory is decidable.

Both answers are positive [SELA, 2006] and [KHARLAMPOVICH-MYAsnikov, 2006].

Free groups can always be ordered [Ilwasawa, 1948], and:

Theorem [VINOGRADOV, 1949]

The free product of a family of groups can be ordered in such a way as to preserve the ordering
on each member of the family.

Theorem [Ilwasawa, 1948]

For every ordered group G, there is a an ordering on a free-group L and a convex normal
subgroup N < L such that G~ L/ N.
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Let M =(M,<,...) be an o-minimal structure.

Write H 4 for the set of germs [ f] at +oc of definable maps f: M — M. We have M < H
for a natural “asymptotic” structure on H,. We set:

Gaa:={[f] € Hpa:[f]> M} = {[f]:1im f = +oo}.
G is closed under composition [f]o[g] =[f o g], and (G, o, [idas], <) is an ordered group.

Example. G: ordered group. R: real-closed field. IRcp: real exponential field.
o For M= (G, <, (lefty),ecg), we have G~ G.
e M=(G,+,<) is a divisible ordered Abelian group, then Gy C Aff)(G).

e For M=(R,<,+,"), we have Gng 2 AT T(R). Moreover H has a structure of differential
field [vDDRIES, 1998].

e The field HR.  contains all germs of functions that can be obtained as combinations of
exp, log, and semialgebraic functions.
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A growth axiom

A simple inequation

Let G be an ordered group and let ., g< G with [, g> 1. How is the inequation

fa>gf

to be solved in G?7

In Gr... if f grows much faster than g, then fo g intuitively grows faster than go f.

How “much faster” must f grow? First of all, we should have f > gogo--- o0 g for all finite
iterations.

More precisely, we should have f > C(g), where

C(g)={h€GR.,:hog=goh}.
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Consider the following axioms for an ordered group G:
GOG1. Forall f,g>1, wehave f>C(g9)=— fg>gf.
GOG2. Forall f,g>1with f>g andall g’ €C(g), thereis an f'€C(f) with f'> g’

Second axiom: the relation g < f <= C(g) <max (f, f!) is an ordering which is compatible
with <. The relation f =g if (f 4 ¢ and g A f) is a convex equivalence relation.

An element ue G \ {1} is said central if for all f=<u, there is a ur € C(u) such that fuf_1 i

GOGS3. For every f =1, there is a central u with ux< f.

Definition: growth order group

A growth order group is an ordered group G in which GOG1, GOG2 and GOG3 hold.

All Abelian ordered groups are growth order groups.

Question 22. If M expands the real ordered field, then must G be a growth order group?
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Idea: obtain GOG closed under certain equations () =1 by constructing ordered differential
fields of formal series with composition laws:

Take R(z) with x > R. For f, g€ R(z) with g > R, the derivative f’ and the compositum
f o g are well-defined.

These operations extend to the ordered field R[[x%]] 2 R(x) of formal Laurent series.
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Problem: The ordered monoid (R[[z%]]”®, z, 0, <) is not a group. x? has no inverse

The operations extend to the field IP of Puiseux series, and (IP”%, 0, 2, <) is a growth order
group.

e Is P divisible? No, since 22 has no functional square root.

e Are any two f, g > x conjugate in P~%? No, for instance 2 and = + 1 are not conjugate.

e Is [P existentially closed among growth order groups? No, because...
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Definition: generalized power series [HAHN, 1907]

Let (OM,-, 1, <) be a linearly ordered abelian group. Then R[[9]] is an ordered field for the
Cauchy product

(Z f(m)m>-<z g(ﬂ)n>:= > f(m)g(n) (mn).
meM ne m,neMN

Certain infinite families can be summed in R[[91]]. We get a “formal Banach space”:

i
e

e if ¢ is infinitesimal then >~ (-1)"¢e"

e we have an implicit function theorem [vDHOEVEN, 2006]

e equations over R[[M1]] with approximate solutions in R[[9J1]] sometime have exact solutions

in R[[907]]
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Transseries [DAHN-GORING, 1987 and EcALLE, 1992]

Field T of transseries: generalized series involving x, log x and €* and combinations thereof.

+o0
1= Z nle’n +logaz +7+x logz + Z 2P s a transseries.
n=1 p=0

The number of iterations of exp and log must be uniformly bounded.

T enjoys a composition law o: T x T=® — T that acts termwise on the right:

+oo +0o0
Tolopw— Z nlz'/m +logsz + 7+ (logz) 2logsx + Z Ve (log x)P.
=i p=0

Remark: The elements 2z and =+ 1 are conjugate, via (2z) 0 e(1982)% —(082)7 ¢ (5 4 1),
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Conjugacy in transseries

We now look at the sructure (T-%, 2, 0, <).

Theorem [vDDRIES-MACINTYRE-MARKER, 2001}

This is a right-ordered group, i.e for all f,g,h, f >g= foh>goh.

Proposition [B., 2022]
This is a growth order group.

The group is not divisible since e” has no square root. There is no “half exponential” which can
be expressed as a combination of exponentials and logarithms. However:

Theorem [Edgar, 2018]
Any two f,g>x with f, g <e” are conjugate.

Since ©+1<e” and ™ =241 has a solution f :x—i—% for all n € N, we deduce that

Moo= LB f el

is a divisible growth order group.
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Conjucacy and Abel’s equation

Goal: a group G O T~ in which e® is conjugate with z + 1. — solve the conjugacy equation

yo(z+1)=e“oy (8)
in extensions of (T-R, o, x, <).

(8) is the formal version of ABEL's equation for the exponential function. [KNESER, 1949] There
is a strictly increasing and analytic solution E of

V¢>0,E(t+1)=e2®
on R. Its growth is transexponential: F/(t) >expoexpo---oexp(t) for sufficiently large ¢ € R.

Question 26. Can an o-minimal expansion of (IR, 4, X, <) define a transexponential function?

Proposition [vdDries-MACINTYRE-MARKER, 2001]

HR.., embeds into (T, +, x,<,0,0).

Can we construct differential fields IH with composition where (8) has solutions, and into which
more general H 4 can be embedded?
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[ScHMELING, 2001] defined an extension H 0 T with formal symbols €%, ¢,,» x for all n € N,
where e{ = e* and

e’nrio(x+1) = efnoeynti(x) (12)

e 0l ma)—[L ni)ocia — 7.

Logarithmic hyperseries [VDDRIES-VDHOEVEN-KAPLAN, 2018]

A differential ordered field with composition (IL, 4, x, <, 0, 0) where for all ;1 € On, we have
a symbol 0 . x € I with {1 x =logx and

(Ewwrl {13) (@) (fwu 33) S (fwmtl 33) e 1.

le. the inverse equations of (12) are valid. But (.-, 0, ) is not a group.

Finitely nested hyperseries [B.-vDHOEVEN-KAPLAN, 2021]

An extension . D I where LR — L>R: g (¢, x) 05 is bijective and strictly increasing.

Theorem [B., 2022]

The derivation O and composition law o on I extend in a natural way to L.
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Conjugacy in hyperseries

Using Taylor series arguments, one shows that:

Proposition [B., 2022]

The structure (ITPR, o,x,<) is an ordered group.

In the group L”%, all conjugacy equations can now be solved:

Theorem [B., 2022]

Any two [, g in L= with f. g > x are conjugate.

Using this, one shows that:

Proposition [B., 2022]

The structure (L%, 0, 22, <) is a growth order group.

So we have a GOG solution to our Question 14 on ordered groups.
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[ConwAy, 1976] defined the class No of surreal numbers. 1t comes with a linear ordering <
of magnitude, and a partial, well-founded ordering  of simplicity.

Fundamental property: if L, R C No are subsets with L < R, then there is a unique C-minimal
number {L | R} with L<{L | R} <R.

(And all numbers are constructed in this way.)

Conway inductively defined field arithmetics on No. For a ={L, | R,}, b={Ly | Ry}, we have

a+b={Ls+b,a+Ly | a+ Ry, Ry+b}.

The ordered field (No, +, x, <) naturally contains the reals R as well as the ordinals On with
their Hessenberg (commutative) arithmetic.

We have a simplest positive infinite number w corresponding to the ordinal w and the series .
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Idea: in No, asymptotics can be brought to life; for a regular growth rate f: R — IR and
a={L | R} € No” & define f(a) as the number

{sub- f-asymptotics(a), f-asymptotics(L) | f-asymptotics(R), sup- f-asymptotics(a)}

We have numbers in R(w) for polynomial asymptotics.

[GONSHOR, 1986]: a natural exponential function on No with Rexp < (No, +, X, exp, <).

e [B.-vDHOEVEN-MANTOVA, 2020]: a natural transexponential function E,, on No~ &,

e [B.-vDHOEVEN, 2022]: functions E,» and L, as in IL on surreal numbers.

|

B.-vDHOEVEN, 2022]

There is a natural embedding of I into No, and every surreal number can be represented as
a (possibly infinitely nested) hyperseries in the same vein as elements of 1.

Work in progress]

|

There is a natural extension o of the composition law on L to No.

(No~ R, 0,w, <) is a growth order group with exactly three conjucacy classes.
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Let G be among Tg'®, L™, and No”R. For g€ G\ {x}, we have a unique isomorphism

(Ra +707 <) 7 (C(f)a O, L, <)

n e f[r]

with fI1' = f. Indeed this holds for f=a =+ 1, and is carried over by conjugacy.
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Transfinite non-commutative products

Let G be among Tg'®, L™, and No”R. For g€ G\ {x}, we have a unique isomorphism

(Ra +707 <) 7 (C(f)a O, L, <)

n e f[r]

with fI1' = f. Indeed this holds for f=a =+ 1, and is carried over by conjugacy.

Using the {- | -} operation, one can define, for all strictly <-decreasing ordinal indexed sequence
(1)~ <o of “<-simple” elements of G and sequences ()~ <o € (R*)?, a transfinite composition

@ ug’v] - ou[ﬁ] - Ou[lrl] Ougro] (16)
y<a

[Work in progress]

Every element in G can be expressed as in (16), in a unique way.

In this sense, the GOG (No~ ¥, 0,w, <) is a non-commutative Hahn product No~ ¥ ~ Hlsls

Question 30. Can this be generalized? Can one define transfinite non-commutative products
[1;9: of Abelian ordered groups G; indexed by a linearly ordered set (I, <)?



Thank you!



