Three flavors of H-fields

on ordered differential fields of real-valued functions

Kolchin Seminar, Frebruary 26, 2021

Equations in ordered algebraic structures

$(\mathbb{A}, +, <)$: linearly ordered	\mathcal{S} : set of functions $\mathbb{A}^n \longrightarrow \mathbb{A}$	$\mathcal{A}\!:=\!(\mathbb{A},+,<,\mathcal{S})$: an <i>ordered</i>
abelian group	for various $n \in \mathbb{N}$.	algebraic structure.

 $\langle S \rangle$: intersections of all subsets of $\bigcup_{n \in \mathbb{N}} \mathbb{A}^{\mathbb{A}^n}$ containing $S \cup \{+\}$, all projections

$$\pi_{i \to j} \colon \mathbb{A}^n \longrightarrow \mathbb{A}^n \colon (a_0, \dots, a_{n-1}) \longmapsto (a_0, \dots, a_{j-1}, a_i, a_{j+1}, \dots, a_{n-1})$$

and closed under composition. So $\langle S \rangle \equiv$ terms in \mathcal{A} modulo equality as functions.

Constraints imposed by the ordering

- 1. How should $\{+\} \cup S$ behave in relation to the ordering? E.g. for $S = \{\times, \partial\}$, when should $\partial(f) < \partial(g)$ hold?
- 2. Which equations can be solved in \mathbb{A} ?

For ordered rings, there is no solution to $X^2 + 1 = 0$.

For ordered differential fields, imposing $\partial(a) > 0$ for all $a > \text{Ker}(\partial)$ implies that

$$\partial^2(y) + y = 0$$

has no non-zero solution.

Solving equations in ordered extensions

Three particular families of axioms for ${\cal A}$

Identities	$\forall \overline{a}(\varphi[\overline{a}] \Longrightarrow t(\overline{a}) = 0),$	$t \in \langle \mathcal{S} \rangle, \varphi[\overline{x}] \in \mathcal{L}_{<}$
Inequalities	$\forall \overline{a}(\varphi[\overline{a}] \Longrightarrow t(\overline{a}) > 0),$	$t \in \langle \mathcal{S} \rangle, \varphi[\overline{x}] \in \mathcal{L}_{<}$
Equations	$\forall \overline{a}(\varphi[\overline{a}] \Longrightarrow \exists \overline{b}(\psi[\overline{b}] \wedge t(\overline{a}, \overline{b}) = 0)),$	$t \in \langle \mathcal{S} angle, \varphi[\overline{x}], \psi[\overline{y}] \in \mathcal{L}_{<}$

Ordered differential field $(F, +, \times, \partial, <)$

Equalities: axioms for differential rings. **Inequalities:** axioms for ordered rings + ?

Equations: additive and multiplicative inverses + ?

A solution: no differential inequalities

Only axioms for ordered fields and differential fields.

Singer - 1978: Ordered differential fields have a model completion.

Our framework: Intermediate value theorems, and Hardy type inequalities

IVT: for $t \in \langle S \rangle$ of arity 1 and $a, c \in A$ with t(a) < 0 < t(c), there is $b \in (a, c)$ with

t(b) = 0.

If real derivation were monotonous (1)

Germs at $+\infty$

We identify two functions f, g in

 $\bigcap_{n \in \mathbb{N}} \bigcup_{r \in \mathbb{R}} \mathcal{C}^n((r, +\infty), \mathbb{R}),$

if f(r) = g(r) for all sufficiently large $r \in \mathbb{R}$ (written $r \gg 1$).

G: differential ring of equivalence classes (pointwise operations), called germs at $+\infty$.

Definition: Hardy fields

Hardy fields are differential subfields of \mathcal{G} containing \mathbb{R} . They are ordered fields for the order

$$f < g \Longleftrightarrow \forall r \gg 1, \, f(r) < g(r).$$

 \mathcal{H} admits a natural valuation ring $\mathcal{O} \subseteq \mathcal{H}$ and corresponding maximal ideal $\mathfrak{o} \subset \mathcal{O}$:

$$\begin{aligned} \mathcal{O} &:= \{ f : \exists r \in \mathbb{R}^{>0}, -r < f < r \} = \{ f : \lim f \in \mathbb{R} \}, & \text{(finite germs)} \\ \mathfrak{o} &:= \{ f : \forall r \in \mathbb{R}^{>0}, -r < f < r \} = \{ f : \lim f = 0 \}. & \text{(infinitesimal germs)} \end{aligned}$$

If real derivation were monotonous (2)

Maximal Hardy fields

A Hardy field \mathcal{H} is said **maximal** if it has no proper superset which is a Hardy field.

IVT theorem, order 1 [van den Dries - 2000] Let \mathcal{H} be a maximal Hardy field. Let

 $f, h \in \mathcal{H} and P \in \mathcal{H}[Y, Y']$ with P(f, f') < 0 < P(h, h').

Then there is $g \in (f, h)$ with P(g, g') = 0.

Therefore maximal Hardy fields contain / are closed under elementary functions $\operatorname{id}_{\mathbb{R}}$, $\exp_n = \exp \circ \cdots \circ \exp$, $\log_n = \exp_n^{\circ(-1)}$, \arctan, \ldots

Properties of $(\mathcal{H}, \mathcal{O}, \mathfrak{o}, \partial, <)$ for a general Hardy field \mathcal{H}

- Let $f > \mathcal{O}$. Then f must be eventually strictly increasing, so $\forall f, f > \mathcal{O} \Longrightarrow f' > 0$.
- Let $f \in \mathcal{O}$. Then f has a limit $\lim f \in \mathbb{R}$, so $f \lim f$ is infinitesimal. So $\mathcal{O} = \operatorname{Ker}(\prime) + \mathfrak{o}$.
- Let $f \in \mathfrak{o}$. Then $\lim f = 0$ so we cannot have $\lim f' \in \overline{\mathbb{R}} \setminus \{0\}$. So $\mathfrak{o}' \subseteq \mathfrak{o}$.

If real derivation were monotonous (3)

Theorem [H. Kneser - 1949]

There is a bijective strictly increasing analytic function $E_{\omega}: \mathbb{R} \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$\forall r \gg 1, E_{\omega}(r+1) = \exp(E_{\omega}(r)).$$

We have $E_{\omega}(r) > \exp_n(r)$ for $r \gg 1$, for each $n \in \mathbb{N}$: E_{ω} is a hyperexponential function.

Theorem [Boschernitzan - 1986]

For any such E_{ω} , the field $\mathbb{R}(E_{\omega}, E'_{\omega}, E''_{\omega}, \dots)$ is a Hardy field.

Let \mathcal{H} be maximal with $\mathcal{H} \supseteq \mathbb{R}(E_{\omega}, E'_{\omega}, E''_{\omega}, \dots)$. For each $n \in \mathbb{N}$, we have $E_{\omega} > \exp_n$, so

$$\log_n E_\omega > \mathcal{O}$$
 and $\frac{1}{\log_n E_\omega} \in \mathfrak{o}$ whence

 $(\log_n E_\omega) \cdots (\log E_\omega) E_\omega < E'_\omega < E_\omega (\log E_\omega) \cdots (\log_n E_\omega)^2.$

H-fields with small derivation

Idea: Abstractions of Hardy fields as ordered differential fields.

Definition: H-fields (with small derivation) [van den Dries, Aschenbrenner - 2006]

A H-field with small derivation is an ordered differential field (K,∂) with

- $\textbf{H1.} \ \forall x \in K, x > \mathcal{O} \Longrightarrow \partial(x) > 0. \quad (\mathcal{O} = \{x \in K : \exists c \in \text{Ker}(\partial), -c < x < c\})$
- **H2.** $\mathcal{O} = \operatorname{Ker}(\partial) + \mathfrak{o}$. (\mathfrak{o} : maximal ideal of \mathcal{O})

H3. $\partial(\mathfrak{o}) \subseteq \mathfrak{o}$.

For instance, (formal) Laurent series with $\partial (\sum_{k=-n}^{+\infty} a_k \varepsilon^k) := \sum_{k=-n}^{+\infty} k a_k \varepsilon^{k-1}$ form an *H*-field with small derivation.

Liouville closure

K is said Liouville-closed if it is real-closed and the following equations (in y) have solutions

$$y' = \xi$$
 , $y' = y \xi \land y > 0$ for each $\xi \in K$.

A Liouville-closure of K is a minimal H-field extension $K \longrightarrow L$ where L is Liouville-closed.

Any H-field with small derivation has a Liouville-closure. Any Hardy field has a Liouville-closure which is a Hardy field.

Transseries

Transseries [Dahn, Göring - 1987; Ecalle - 1992]

Transseries are Hahn series involving formal terms x, $\log x$ and e^x and combinations thereof.

e.g.
$$f := \sum_{n=1}^{+\infty} n! e^{x/n} + \log_2 x + 7 + x^{-2} \log x + \sum_{p=0}^{+\infty} e^{-x^{p+1}} x^p$$
 is a transseries.

The field \mathbb{T} of transseries is equipped with a formal, termwise derivation $\partial: \mathbb{T} \longrightarrow \mathbb{T}$, e.g.

$$\partial(f) = \sum_{n=1}^{+\infty} (n-1)! e^{x/n} + \frac{1}{x \log x} - 2x^{-3} \log x + x^{-3} + \sum_{p=0}^{+\infty} (p x^{p-1} - (p+1) x^p) e^{-x^{p+1}},$$

and a formal composition law $\circ: \mathbb{T} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$, e.g.

$$f \circ \log x = \sum_{n=1}^{+\infty} n! x^{1/n} + \log_3 x + 7 + (\log x)^{-2} \log_2 x + \sum_{p=0}^{+\infty} e^{-(\log x)^{p+1}} (\log x)^p.$$

Each transseries $f \in \mathbb{T}$ defines a function $\tilde{f}: \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}: g \longmapsto f \circ g$, which behaves similarly to germs lying in Hardy fields:

Formal Taylor expansions

For all $g \in \mathbb{T}^{>\mathbb{R}}$, for sufficiently small $\delta \in \mathbb{T}$, we have

$$f \circ (g + \delta) = \sum_{k \in \mathbb{N}} \frac{\partial^k (f) \circ g}{k!} \delta^k.$$

So $\partial(f)$ is the functional derivative of \tilde{f} . In that sense, \tilde{f} is a germ at $+\infty$ of a smooth function $\mathbb{T} \longrightarrow \mathbb{T}$.

It follows that $(\mathbb{T}, +, \times, \partial)$ is a *H*-field with small derivation (same proof as in Hardy fields).

Theorem

The derivation $\partial: \mathbb{T} \longrightarrow \mathbb{T}$ is surjective.

There is an exponential function $\exp : \mathbb{T} \longrightarrow \mathbb{T}^{>0}$ with

 $\forall h \in \mathbb{T}, \partial(\exp(h)) = \partial(h)\exp(h),$

so \mathbb{T} is Liouville-closed.

Model theory of transseries

The theory of $(\mathbb{T}, +, \times, \partial, \mathcal{O})$ is known due to work of Aschenbrenner, van den Dries and van der Hoeven:

Theorem [ADH - 2015]

The complete theory $\operatorname{Th}(\mathbb{T}, +, \times, \partial, \mathcal{O})$ of \mathbb{T} is model-complete.

Theorem [ADH - 2015]

 $\operatorname{Th}(\mathbb{T}, +, \times, \partial, \mathcal{O})$ has QE in a natural language and is decidable.

Conjecture (ADH): Th $(\mathbb{T}, +, \times, \partial, \mathbb{R})$ is the theory of maximal Hardy fields.

Theorem [ADH - 2015, based on work of van der Hoeven - 2006]

 $\operatorname{Th}(\mathbb{T}, +, \times, \partial, \mathcal{O})$ is axiomatized by axioms for Liouville-closed *H*-fields with small derivation and the IVT.

Therefore, the conjecture is equivalent to the conjecture that any maximal Hardy field satisfy the IVT.

Surreal numbers

Conway's class **No** of surreal numbers is an ordered field whose underlying order is the lexicographically ordered complete binary tree $\{-1, 1\}^{<On}$, where depths are arbitrary ordinals.

Simplicity: $a \sqsubseteq b$ if there is a (descending) path from a to b in the tree.

Inductive definitions on No

Fundamental property of $(No, \leqslant, \sqsubseteq)$

For all <u>sets</u> of numbers L, R with L < R, there is a unique \sqsubseteq -minimal number $\{L|R\}$ with

 $L < \{L|R\} < R.$

Well-founded order

$$\textit{For } a \in \mathbf{No}, \textit{ we set } a_{\underline{L}} := \{ b \in \mathbf{No} : b < a, b \sqsubseteq a \} \quad \textit{,} \quad a_{R} := \{ b \in \mathbf{No} : b > a, b \sqsubseteq a \}.$$

So $a = \{a_L | a_R\}$. The partial order $(\mathbf{No}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [Conway - 1976]

Inductive definition of the sum a + b of numbers a, b. We set

$$a + b = \{a_L + b, a + b_L | a + b_R, a_R + b\}.$$

Similar equations exist for $-a, a b, a/_b$.

 $(No, +, \times)$ is a real-closed field.

Numbers as Hahn series [Conway - 1976]

There is a subgroup Mo of $(No^{>0}, \times)$ which is a section of the natural valuation. Each number a can be canonically identified with a unique Hahn series

 $a \equiv \sum_{\mathfrak{m} \in \mathbf{Mo}} a_{\mathfrak{m}} \mathfrak{m}$ with monomial group \mathbf{Mo} and real coefficients $a_{\mathfrak{m}} \in \mathbb{R}$.

Exponential [Gonshor - 1986] and transseries [Berarducci, Mantova -2019]

There is a natural isomorphism exp: $(No, +, <) \longrightarrow (No^{>0}, \times, <)$, and $(No, +, \times, exp)$ is a model of the real exponential field. Write $\log = \exp^{\circ(-1)}$ and E_n, L_n for n-fold iterates of exp and \log .

Using the class of "exponents" $\Gamma := \log(Mo)$, numbers can be re-presented as transseries

$$a = \sum_{\gamma \in \Gamma} a_{[\gamma]} e^{\gamma}$$

where $a_{[\gamma]} := a_{e^{\gamma}} \in \mathbb{R}$ for each $\gamma \in \Gamma$. Iteratingly closing $\{\omega\}$ under sums with real coefficients, exp and log, we obtain an isomorphic copy of \mathbb{T} within **No**, where x is identified with ω .

Theorem [Berarducci, Mantova - 2018]

There is a derivation ∂_{BM} on **No** such that (**No**, ∂_{BM}) is a Liouville-closed *H*-field with small derivation.

The authors relied on the presentation of numbers $a \in \mathbf{No}$ as transseries $a = \sum_{\gamma \in \Gamma} a_{[\gamma]} e^{\gamma}$. Imposing $\partial_{BM}(\sum_{\gamma} a_{[\gamma]} e^{\gamma}) := \sum_{\gamma} a_{[\gamma]} \partial_{BM}(\gamma) e^{\gamma}$, it is enough to define ∂_{BM} on exponents $\gamma \in \Gamma$.

 $\Gamma \subseteq No$ so by induction, this reduces to defining ∂_{BM} on log-atomics, i.e. exponents γ with

Log-atomics form a proper class of numbers \rightarrow many ways to define ∂_{BM} . ∂_{BM} is "simplest"

Theorem [ADH - 2019]

 $(\mathbf{No}, +, \times, \partial_{BM}, \mathbb{R})$ is an elementary extension of $(\mathbb{T}_{LE}, +, \times, \partial, \mathbb{R})$. Any H-field with $\operatorname{Ker}(\partial) = \mathbb{R}$ embeds into $(\mathbf{No}, +, \times, \partial_{BM}, v)$ as a differential valued field.

Problem: ∂_{BM} is not compatible with presentations of numbers as functions \rightarrow how to define compatible derivations?

Hyperexponentiation on No

Theorem [with van der Hoeven and Mantova]

There is a surreal function $E_{\omega}: \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}^{>\mathbb{R}}$ with

- $E_{\omega}: \mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}^{>\mathbb{R}}$ is strictly increasing and bijective.
- $E_{\omega}(a) > \exp_n(a)$ for all $a \in \mathbf{No}^{>\mathbb{R}}$ and $n \in \mathbb{N}$.
- $E_{\omega}(a+1) = \exp(E_{\omega}(a))$ for all $a \in \mathbf{No}^{>\mathbb{R}}$.
- E_{ω} has Taylor expansions around each number $a \in \mathbf{No}^{>\mathbb{R}}$. We have $E'_{\omega} = \prod_{n \in \mathbb{N}} \log_n \circ E_{\omega}$.

This generalizes to even faster growing functions $E_{\omega^{\mu}}$: $\mathbf{No}^{>\mathbb{R}} \longrightarrow \mathbf{No}^{>\mathbb{R}}$ for all $\mu \in \mathbf{On}$, with $E_{\omega^{\mu+1}}(a+1) = E_{\omega^{\mu}}(E_{\omega^{\mu+1}}(a))$ for all $a \in \mathbf{No}^{>\mathbb{R}}$.

Given an ordinal γ in Cantor normal form

$$\gamma = \sum_{i=0}^{p} \omega^{\eta_i} m_i, \ \eta_0 > \cdots > \eta_p, \ m_0, \ldots, m_p \in \mathbb{N},$$

we set $E_{\gamma} := E_{\omega^{\eta_0}}^{\circ m_0} \circ \cdots \circ E_{\omega^{\eta_p}}^{\circ m_p}$. The functional inverse L_{ρ} of E_{ρ} satisfies

$$\forall a \in \mathbf{No}^{>\mathbb{R}}, L'_{\rho}(a) = \frac{1}{\prod_{\gamma < \omega^{\mu}} L_{\gamma}(a)}$$

Defining a hyperserial derivation ∂

Hyperserial expansions

For $\mathfrak{m} \in \mathbf{Mo}^{\neq 1}$, there are elementary hyperseries f_l , f_r , whose derivatives f'_l and f'_r are known, and $u, \psi \in \mathbf{No}$, such that \mathfrak{m} expands uniquely as

 $\mathfrak{m} = (f_l \circ \psi) \times (f_r \circ u).$

Defining ∂ on $\mathbf{Mo}^{\neq 1}$: The number $\partial(\mathfrak{m})$ is determined by f'_l , f'_r , $\partial(\psi)$ and $\partial(u)$. Fixing $\partial(\omega) := 1$, the only ambiguous case is when \mathfrak{m} is an infinite expansions such as

$$\mathfrak{m} = \mathrm{e}^{\sqrt{L_1(\omega)} + \mathrm{e}^{\sqrt{L_2(\omega)}} E_{\omega}^{\sqrt{L_{\omega}(\omega)} + \mathrm{e}^{\sqrt{L_{\omega}^2(\omega)}} E_{\omega^2}^{\cdot}} \mathfrak{m}_2} \mathfrak{m}_1$$

We must have
$$\partial(\mathfrak{m}) = 1 + e^{a_1} \left(\frac{1}{2\omega\sqrt{L_1(\omega)}} + \frac{e^{\sqrt{L_2(\omega)}}}{2\omega\sqrt{L_1(\omega)}} \mathfrak{m}_1 + e^{\sqrt{L_2(\omega)}} \partial(\mathfrak{m}_1) \right)$$

= ... (telescopic sum)

Work in progress [B.]:

There is a hyperserial derivation ∂ on **No** with $(\mathbf{No}, +, \times, \partial, \mathbb{R}) \simeq (\mathbf{No}, +, \times, \partial_{BM}, \mathbb{R})$.

Thank you!