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Simplicity: a is simpler than b, written a C b, if there is a path from a to b in the tree.
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Fundamental property of (No, <,)
For all sets of numbers L, R with L < R, there is a unique "-minimal number {L | R} with

L<{L | R}<R.
In particular No is not a set (mind the Burali-Forti like paradox {No | @} >{No | @} /)

Well-founded order
For a € No, we have two sets a;, :={beNo:b<a,bCa} and ap:={beNo:b>a,bCa}.

So a=1{ar | ar}. The partial order (No, L) is well-founded — inductive definitions.

Surreal arithmetic [CONwAY - 1976]

Inductive definition of the sum a + b of numbers a,b. We have
a+b={ar+b,a+by | a+br,ar+0b}.

Similar equations exist for —a,ab,?,. (No,+, x) has the same first-order properties as IR.

Strength: No is spherically complete — numbers can be represented as transfinite sums
— certain transfinite sums exist on No
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Each ordinal o € On is inductively identified with {3: 8 <« | @}, so
0={9 | o} 1={0] o} 2={0,1]| o} w={N | g}.
Recall that a +b={ar +b,a+br | a+br,ar+b}. Let us check that 14 1=2.

1+1 = {0]|2}+{0]| 2}

= {1]2)
- {0.1]2)
= 2.

We beat Principia Mathematica ! Since No is a strong real-closed field, we have exotic functions

exp(z)

1 1
+2x2+ 323+ -
m(z72—1)2 -1

x — expy(x) +
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An integer part

Omnific integers

Conway defined the strong subring Oz of omnific integers. We have

Oz={xreNo: z={z—1|z+1} }.

The additive group (On) generated by ordinals is contained in Oz, and Oz is an integer part:
for all x € No, there is a unique z € Oz with 2 <z <z + 1. In fact No =Frac(Oz).

[BErRARDUCCI - 1999]. The number w +w 2 +w /54 --- 41 is prime in Oz,

Some open questions.

e Factorization theorem in Oz? (partial results in R[[w™ ]| +7Z by MANTOVA)

e Can one characterize prime numbers in Oz?

e Given z € Oz, how does the order type m(z) € On of {y:y C z and y is prime} behave?

e Can we define a subring Z of No such that (No,Z) and (IR, Z) have the same properties?
- Godel asks: how would we even know?
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Imagine there existed a scale containing “regular’ and “simple” functions, building blocks, such
that any regular function can be asymptotically (at +00) described by combining those blocks.

Real-analytic functions: monomials x" as building blocks.

14zt 24... = 2
r—1
= exp
1
Z nlxr™" = e=
nelN

Transseriable functions: exp and log as building blocks.

1 1

l+z t4a724 . +es?

logx +logox +loggxr+--- = 7
Ecalle’s growth scale, Grevey o« < w® functions: e.g. very slowly growing functions L with
log L' ~log x +logsx + logsx + - - -

But L+ ¢§ for 6 =O(1) also satisfies this. How to single out “simple” building blocks?
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A simple scale.
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id?2

exp o log?

expa O (log%)

exp

(adding intermediate asymptotics)
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Looking for a building block between L and R.
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A portion of the surreal scale containing



Hardy's dream surrealized

... but those are no longer real-valued functions.

Surreal-valued ones then? What kind?






Fields of real functions 8/20

A field of real functions is a field H of germs at +o00 of real-valued functions, closed under
derivation and composition. E.g. rational functions (not meromorphic functions: they may have
zeroes at +00), or germs of functions definable using 4, x and exp and log.



Fields of real functions 8/20

A field of real functions is a field H of germs at +o00 of real-valued functions, closed under
derivation and composition. E.g. rational functions (not meromorphic functions: they may have
zeroes at +00), or germs of functions definable using 4, x and exp and log.

For f € H, we must have f =0 at +00, hence by continuity f >0 at +o0o or f <0 at +00. So
H is an ordered field. Moreover f is either constant or strictly monotonous (since '€ H).



Fields of real functions

A field of real functions is a field H of germs at +o00 of real-valued functions, closed under
derivation and composition. E.g. rational functions (not meromorphic functions: they may have
zeroes at +00), or germs of functions definable using 4, x and exp and log.

For f € H, we must have f =0 at +00, hence by continuity f >0 at +o0o or f <0 at +00. So
H is an ordered field. Moreover f is either constant or strictly monotonous (since '€ H).

As a differential ordered field

H is in an H-field with small derivation as per Aschenbrenner and van den Dries.

This means that we have O( f) >0 whenever [ >R and lim O( f) =0 if lim f=0.



The composition law 9/20

With the compositional structure o: H X H>® — H (besides associativity)

o FEach f+— fog:H—H for a fixed g € H>™ is an endomorphism of ordered rings.

e Fach g— fog:H>™ —H for a fixed f € H is monotonous.

fog
flog

o FEach f € 'H has Taylor expansions around each g € H=": when § < , we have

- f(k)og k (n+1) n+1
folg+d)—) 8¢ < (f og)é"tl,  neN.
k=0 '



Fields of surreal functions

Definition
A field of surreal functions (henceforth FSF) is a strong subfield 7 C No together with
a strong derivation O0: F — F such that (F,0) is an H-field and an associative map o:

F x No”R — No with Fo F>R C F such that

e Fach F — No; f+ fox for fixed x € No~ ™ is a strong morphism of ordered rings.
e Fach No”R® — No;z— foux for fixed f € F>R s strictly increasing.

o Forall feF, x,0 e No withxz >R, d <x and § < Em;x for all m € supp f, we have

folz+d)=> Wak.

kelN



Closure under functional equations

Other interesting properties which are not imposed:

Neutral element: An id € F~R with

idox = x VreNo~ R
foid = f VfelF.
Inverses: For each f € F~R an finve F>R with

fofinV: finvof:id.

Conjugates: For all f,g>id, an h € F~R with

hof=goh.
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The goal of my PhD is to define a nice FSF on No with underlying field No itself.
For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

We'll consider FSFs F such that for each f € F, all strictly simpler numbers a  f lie in F. In
other words F will be intial (= downward closed) in (No,C). Let us start:

Real numbers r € IR must be constant functions 2 +— 7.

Cuts in real numbers {L | R} where L, R C R always lie in R U (R4 w*1!), so we first have
to deal with the number w={N | @} as a function.

Since w is the simplest number with w >n for all n € N, we may ask ourselves:

What is the simplest function f >n for all n € IN?
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| aurent series

w as the identity function

We must have O(w) >0 by H-field properties. So the simplest choice of O(w) is 1={0 | &}.

For x € No” R, we must have wox >Noz=N and wo (zz N"No”®)<wozxr <woxr. By
induction, we obtain

wox J{N,wo (zryNNo”R) | wozg} ={N,2; "No”® | zg} ={zr | zr} =2=.
So w should be id.
— for all r € R and n € Z, the number r w™ should act as x +— r 2™.

— each Laurent seriesa=3%_ _, a,w"€ R[[w?]] in w should act as x +— > nez n "

Now what about the number w¥ ={w":neN | g} 7

What is the simplest non polynomially bounded function?
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exp(a) := {exp(aL) la —ar]n, exp(ar) @ — ar)on1 [Z};p_(aj])N’ [aLe}ipCEiI];\)I+1}

defines an isomorphism (No, +, <) — (No~Y, x, <).
We should have 9(w®) > 9(w™N) =N wN~1 by H-fields axioms. So {Nw™N ! | g} =w* is the
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Exponentiation and transseries

Exponential [GONSHOR - 1986]

k
For a € No and n €N, set [a],: =), % The inductive equation

exp(a) := {exp(aL) la —ar|n, exp(agr) [a — arlon+1 [eXP(CLR) exp(ar) }

AR — CL]JN7 [CLL - Cl]Q]N+1
defines an isomorphism (No, +, <) — (No~Y, x, <).

We should have 9(w®) > 9(w™N) =N wN~1 by H-fields axioms. So {Nw™N ! | g} =w* is the

simplest value for O(w®). It follows that exp is the simplest function for w®.

Closing R[[w?]] under exp, log and transfinite sums, we obtain a field T.

Theorem [BERARDUCCI and MANTOVA - 2019, SCHMELING - 2001]

The function o: R[[w?]] x No”® — No extends uniquely as a function o: T x No~® — No
which is compatible with exp, log and transfinite sums.

fw

We have exp,(w)=w""  (n times) for all n € N. So what about ¢g={w,w®,w*",... | @}7?

What is the simplest transexponential function on No?
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Further properties of a FSF with exp(w),log(w) € F

a) If f >expn, thenVn,f (logw)o f--- (logrw)o f<O(f)< f (logw)o f--- (log,w) o f.
b) If f>id+ 1R, then fo(id+7)> f+ R forall r e R”°,
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Surreal hyperexponentiation

Further properties of a FSF with exp(w),log(w) € F

a) If f >expn, thenVn,f (logw)o f--- (logrw)o f<O(f)< f (logw)o f--- (log,w) o f.
b) If f>id+ 1R, then fo(id+7)> f+ R forall r e R”°,

Value of 9(&g): By a), the simplest value for d(g¢) is HneNlogn(go) _ o2 nenlognii(eo)

Value of ggo (w4 1): We have logn(gg) >w+R. So b) yields ego (w+ 1) > exp,(log,(co) +
1) for all n € N. But {exp,(log,(c0) +1):n €N | @} =exp(eg). Thus £y should satisfy

goo (x+1)=exp(epox) Vz € No~ I (3)

Theorem [B. van DER HOEVEN, MANTOVA - 2020]

There is a simplest strictly increasing solution exp,: No~>~ — No~'~ of (3) with

expl) (x)
expy(z+9)= Z # 5"

kelN

>R expw(T)
for all x € No and 0 < T o o (expoa(@)




Real hyperexponentiation

Theorem [KNESER - 1949]

There is a strictly increasing analytic map E: [a,+00) — IR which solves Abel’s equation:

Vr>a, E,(r+1)=exp(E,(r)). (4)

We have E,,(r) > exp,(r) for > 1, for all n € N. We call £, a hyperexponential function.
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Real hyperexponentiation

Theorem [KNESER - 1949]

There is a strictly increasing analytic map E: [a,+00) — IR which solves Abel’s equation:

Vr>a, E,(r+1)=exp(E,(r)). (7)

We have E,,(r) > exp,(r) for > 1, for all n € N. We call £, a hyperexponential function.

This also yields an analytic solution 7 +— Ew(Lw(r) +%) to Schroder’s equation ¢ o ¢ = exp.

Ecalle and Schmeling (among others) studied this type of functions, along with other very fast
growing / slowly growing functions F,~, L~ such that for > 1, we have

Ewu+1(7“—|—1> = Ewu(Equrl(T)),
Lerr(Ln(r)) = Lyuen(r) — 1,
= (r)

qu(Ewu(T)) Ewu(qu 7“) = T.

On R, one is limited to small values of 1 (e.g. finite). But on No, we can take any € On!
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Logarithmic hyperseries [VAN DEN DRIES, VAN DER HOEVEN, KAPLAN - 2018]

There is a strong subfield I. C No of logarithmic hyperseries, built upon transfinite products

[= H 6[7” (formally [is a map p— R;v+——1[),
Y<p

equipped with a strong derivation 0: 1L — 1L and a composition law o: L x L% — I with:

e (IL,0) is closed under derivation and integration.
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Logarithmic hyperseries [VAN DEN DRIES, VAN DER HOEVEN, KAPLAN - 2018]

There is a strong subfield I. C No of logarithmic hyperseries, built upon transfinite products

[= H 6[7” (formally [is a map p— R;v+——1[),
Y<p

equipped with a strong derivation 0: 1L — 1L and a composition law o: L x L% — I with:
e (IL,0) is closed under derivation and integration.

e each f € Il has Taylor expansions around each point, with radius 1.

Each function f+—/_ x0o f behaves similarly to the real function L~ (e.g. for € N). For all
ordinals 7, 11, we have generative identities:

o) = 11 &° o) = 1] "

p<ry nelN

gwuﬂogwu — gwu-i-l—l,

Omo Omyp



Hyperserial fields

A hyperserial field is a strong field T together with an action o: 1L x T>® — T of 1L on
T by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular IL is a hyperserial field. Say that T is closed if for each ;1 € On, the function
T>R ——T>R: 57, u0s is bijective.



Hyperserial fields -

A hyperserial field is a strong field T together with an action o: 1L x T>® — T of 1L on
T by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular IL is a hyperserial field. Say that T is closed if for each ;1 € On, the function
T>R ——T>R: 57, u0s is bijective.

Theorem [B., vaN DER HOEVEN, KAPLAN - 2021]

There is a closed extension 1: T — T which is initial among closed extensions of T .

L ~
T — T closed

e\ LAY
U closed



Hyperserial fields

A hyperserial field is a strong field T together with an action o: 1L x T>® — T of 1L on
T by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular IL is a hyperserial field. Say that T is closed if for each ;1 € On, the function
T>R ——T>R: 57, u0s is bijective.

Theorem [B., vaN DER HOEVEN, KAPLAN - 2021]

There is a closed extension 1: T — T which is initial among closed extensions of T .

L ~
T — T closed

e\ LAY
U closed

Work in progress [B.]

The composition I x T>® — T extends uniquely into a composition L x T>% — T,



Hyperserial fields

Definition

A hyperserial field is a strong field T together with an action o: 1L x T>® — T of 1L on
T by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular IL is a hyperserial field. Say that T is closed if for each ;1 € On, the function
T>R ——T>R: 57, u0s is bijective.

Theorem [B., vaN DER HOEVEN, KAPLAN - 2021]

There is a closed extension 1: T — T which is initial among closed extensions of T .

L ~
T — T closed

e\ LAY
U closed

Work in progress [B.]

The composition I x T>® — T extends uniquely into a composition L x T>% — T,

Work in progress [B.]

(I~L>R, o, <) is a linearly bi-ordered group in which any two positive elements are conjugate.
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Back to No

Theorem [B., vaAN DER HOEVEN - 2021]

There is a composition law o: 1. x No~® —— No for which (No, o) is a closed hyperserial field.

The extension o: I x No” & — No yields a FSF containing such functions as

exXpPyr, log ,u 1€ On : “transfinite iterates” of exp and log
exp, :=expy o (log, +7),7€R : fractional iterates of exp, e.g. expy, is the
unique solution of ¢ o ¢ =exp, and {exp,:r € R}

is the set of solutions of ¢ oexp=-exp o ¢.

We have IL C No. Indeed [B., van DER HOEVEN - 2019], there are numbers a € No with

a/:\/a—'_e /—logw_i_e\/logzw—i—e. ¢I~L

Those are good candidate solutions to the functional equation

®=+/w+exp(pologw).



Thank you!



