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Surreal numbers 2/20

Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete
binary tree f¡1; 1g<On whose depths are arbitrary ordinals.
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Inductive definitions on No 3/20

For all sets of numbers L;R with L<R, there is a unique v-minimal number fL j Rg with

L< fL j Rg<R:

In particular No is not a set (mind the Burali-Forti like paradox fNo j ?g> fNo j ?g !)

Fundamental property of (No;6;v)

For a2No, we have two sets aL := fb2No: b< a; bvag and aR := fb2No: b>a; bv ag.

So a= faL j aRg. The partial order (No;v) is well-founded ¡! inductive definitions.

Well-founded order

Inductive definition of the sum a+ b of numbers a; b:

Induction hypothesis: aL+ b, a+ bL and a+ bR, aR+ b are defined.

Surreal arithmetic [CONWAY - 1976]

Strength: No is spherically complete ! numbers can be represented as transfinite sums
! certain transfinite sums exist on No
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Examples 4/20

Each ordinal �2On is inductively identified with f� : � <� j ?g, so

0= f? j ?g; 1= f0 j ?g, 2= f0; 1 j ?g, and != fN j ?g.

Recall that a+ b= faL+ b; a+ bL j a+ bR; aR+ bg. Let us check that 1+1=2.

1+1 = f0 j ?g+ f0 j ?g

We beat Principia Mathematica ! Since No is a strong real-closed field, we have exotic numbers

"0+
!!

� (! /3 2¡ 1)2¡ 1
+2!

1
2+3!

1
3 + � � � and many more...
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An integer part 5/20

Conway defined the strong subring Oz of ooooooooommmmmmmmmnnnnnnnnniiiiiiiiififififififififificcccccccc iiiiiiiiinnnnnnnnnttttttttteeeeeeeeegggggggggeeeeeeeeerrrrrrrrrsssssssss. We have

Oz= fx2No : x= fx¡ 1 j x+1g g:

The additive group hOni generated by ordinals is contained in Oz, and Oz is an integer part:
for all x2No, there is a unique z 2Oz with z6x<z+1. In fact No=Frac(Oz).

Omnific integers

[BERARDUCCI - 1999]. The number !+! /1 2+! /1 3+ � � �+1 is prime in Oz.

Some open questions.

� Factorization theorem in Oz? (partial results in R[[!R>0]] +Z by MANTOVA)

� Can one characterize prime numbers in Oz?

� Given z 2Oz, how does the order type �(z)2On of fy : y v z and y is primeg behave?

� Can we define a subring Z of No such that (No;Z) and (R;Z) have the same properties?
- Gödel asks: how would we even know?
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G. H. Hardy's dream 6/20

Imagine there existed a scale containing �regular� and �simple� functions, building blocks, such
that any regular function can be asymptotically (at +1) described by combining those blocks.

Real-analytic functions: monomials xn as building blocks.

1+x¡1+x¡2+ � � � � x

x¡ 1 ; but

? � exp, andX
n2N

n!x¡n � e
1
x ?

Transseriable functions: exp and log as building blocks.

1+x¡1+x¡2+ � � �+e
1

x2 � x

x¡ 1 +e
1

x2; but

log x+ log2x+ log3x+ � � � � ?

Ecalle's growth scale, Grevey �<!! functions: e.g. very slowly growing functions L with

logL0� log x+ log2x+ log3x+ � � �

But L+ � for �=O(1) also satisfies this. How to single out �simple� building blocks?
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Hardy's dream surrealized 7/20

id
id+1
id+2id+2
���
2 id

2 id+12 id+1
���
3 id3 id
���
id2

���
exp

exp � expexp � exp
���

A simple scale.
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Looking for a building block between L and R.



Hardy's dream surrealized 7/20

!

���
!+!¡1

���
!+1
���
2!
3!
���n

N! j !1+
1

N+1

o
���
! /3 2

!2

���
!!

/2 !

���
!!



A portion of the surreal scale containing fL j Rg.
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���

!1+!
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���
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���
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/2 !

���
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. . .but those are no longer real-valued functions.

Surreal-valued ones then? What kind?
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A fififififififififieeeeeeeeelllllllllddddddddd ooooooooofffffffff rrrrrrrrreeeeeeeeeaaaaaaaaalllllllll fffffffffuuuuuuuuunnnnnnnnnccccccccctttttttttiiiiiiiiiooooooooonnnnnnnnnsssssssss is a field H of germs at +1 of real-valued functions, closed under
derivation and composition. E.g. rational functions (not meromorphic functions: they may have
zeroes at +1), or germs of functions definable using +, � and exp and log.

For f 2H, we must have f =/ 0 at +1, hence by continuity f > 0 at +1 or f <0 at +1. So
H is an ordered field. Moreover f is either constant or strictly monotonous (since f 02H).

H is in an HHHHHHHHH---------fififififififififieeeeeeeeelllllllllddddddddd wwwwwwwwwiiiiiiiiittttttttthhhhhhhhh sssssssssmmmmmmmmmaaaaaaaaallllllllllllllllll dddddddddeeeeeeeeerrrrrrrrriiiiiiiiivvvvvvvvvaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn as per Aschenbrenner and van den Dries.

This means that we have @(f)> 0 whenever f >R and lim @(f)= 0 if lim f =0.

As a differential ordered field
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The composition law 9/20

� Each f 7¡! f � g:H¡!H for a fixed g 2H>R is an endomorphism of ordered rings.

� Each g 7¡! f � g:H>R¡!H for a fixed f 2H is monotonous.

� Each f 2H has Taylor expansions around each g 2H>R: when �� f � g
f 0 � g , we have

f � (g+ �)¡
X
k=0

n
f (k) � g
k!

�k� (f (n+1) � g) �n+1; n2N:

With the compositional structure �:H�H>R¡!H (besides associativity)



Fields of surreal functions 10/20

A fififififififififieeeeeeeeelllllllllddddddddd ooooooooofffffffff sssssssssuuuuuuuuurrrrrrrrrrrrrrrrrreeeeeeeeeaaaaaaaaalllllllll fffffffffuuuuuuuuunnnnnnnnnccccccccctttttttttiiiiiiiiiooooooooonnnnnnnnnsssssssss (henceforth FSF) is a strong subfield F �No together with
a strong derivation @: F ! F such that (F ; @) is an H-field and an associative map �:
F �No>R!No with F �F>R�F such that

� Each F ¡!No; f 7! f �x for fixed x2No>R is a strong morphism of ordered rings.

� Each No>R!No;x 7! f �x for fixed f 2F>R is strictly increasing.

� For all f 2F, x; � 2No with x>R, ��x and �� m �x
@(m) �x for all m2 supp f, we have

f � (x+ �)=
X
k2N

@k(f) �x
k!

�k:

Definition



Closure under functional equations 11/20

Other interesting properties which are not imposed:

Neutral element: An id2F>R with

id �x = x 8x2No>R, and
f � id = f 8f 2F .

Inverses: For each f 2F>R, an f inv2F>R with

f � f inv= f inv � f = id:
Conjugates: For all f ; g > id, an h2F>R with

h � f = g �h:



Building fields of surreal functions 12/20

The goal of my PhD is to define a nice FSF on No with underlying field No itself.

For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

We'll consider FSFs F such that for each f 2F , all strictly simpler numbers a@ f lie in F . In
other words F will be intial (= downward closed) in (No;v). Let us start:

Real numbers r 2R must be constant functions x 7¡! r.

Cuts in real numbers fL j Rg where L;R�R always lie in R[ (R�!�1), so we first have
to deal with the number != fN j ?g as a function.

Since ! is the simplest number with ! >n for all n2N, we may ask ourselves:

What is the simplest function f >n for all n2N?
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Laurent series 13/20

We must have @(!)> 0 by H-field properties. So the simplest choice of @(!) is 1= f0 j ?g.

For x2No>R, we must have ! �x>N �x=N and ! � (xL\No>R)<! �x<! �xR. By
induction, we obtain

! �xwfN; ! � (xL\No>R) j ! �xRg= fN; xL\No>R j xRg= fxL j xRg=x:

So ! should be id.

! as the identity function

! for all r 2R and n2Z, the number r !n should act as x 7! r xn.

! each Laurent series a=
P

n2Z an!
n2R[[!Z]] in ! should act as x 7!

P
n2Z anx

n.

Now what about the number !!= f!n :n2N j ?g ?

What is the simplest non polynomially bounded function?
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Exponentiation and transseries 14/20

For a2No and n2N, set [a]n :=
P

k6n
ak

k!
. The inductive equation

exp(a) :=
�
exp(aL) [a¡ aL]N ; exp(aR) [a¡ aR]2N+1

�������� exp(aR)
[aR¡ a]N

;
exp(aL)

[aL¡ a]2N+1

�
defines an isomorphism (No;+; <)! (No>0;�; <).

Exponential [GONSHOR - 1986]

We should have @(!!)>@(!N)=N!N¡1 by H-fields axioms. So fN!N¡1 j ?g=!! is the
simplest value for @(!!). It follows that exp is the simplest function for !!.

Closing R[[!Z]] under exp, log and transfinite sums, we obtain a field T.

The function �:R[[!Z]]�No>R¡!No extends uniquely as a function �:T�No>R¡!No
which is compatible with exp, log and transfinite sums.

Theorem [BERARDUCCI and MANTOVA - 2019, SCHMELING - 2001]

We have expn(!)=!
� ��
!

(n times) for all n2N. So what about "0= f!;!!; !!
!
; : : : j ?g?

What is the simplest transexponential function on No?
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Surreal hyperexponentiation 15/20

a) If f > expN, then 8n,f (log!)� f � � � (logn!)� f <@(f)< f (log!)� f � � � (logn!)2� f.

b) If f > id+R, then f � (id+ r)> f +R for all r 2R>0,

Further properties of a FSF with exp(!); log(!)2F

Value of @("0): By a), the simplest value for @("0) is
Q

n2N logn("0)= e
P

n2N logn+1("0).

Value of "0� (!+1):We have logN("0)>!+R. So b) yields "0� (!+1)>expn(logn("0)+
1) for all n2N. But fexpn(logn("0)+ 1):n2N j ?g= exp("0). Thus "0 should satisfy

"0 � (x+1)= exp("0 �x) for all 8x2No>R. (1)

There is a simplest strictly increasing solution exp!:No>;�¡!No>;� of (1) with

exp!(x+ �)=
X
k2N

exp!
(k)(x)
k!

�k

for all x2No>R and �� exp!(x)Q
n2N logn(exp!(x))

.

Theorem [B. VAN DER HOEVEN, MANTOVA - 2020]
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Real hyperexponentiation 16/20

There is a strictly increasing analytic map E!: [a;+1)¡!R which solves AAAAAAAAAbbbbbbbbbeeeeeeeeelllllllll'''''''''sssssssss eeeeeeeeeqqqqqqqqquuuuuuuuuaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn:

8r >a;E!(r+1)= exp(E!(r)): (4)

Theorem [KNESER - 1949]

We have E!(r)> expn(r) for r� 1, for all n2N. We call E! a hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrreeeeeeeeexxxxxxxxxpppppppppooooooooonnnnnnnnneeeeeeeeennnnnnnnntttttttttiiiiiiiiiaaaaaaaaalllllllll function.

This also yields an analytic solution r 7!E!
¡
L!(r)+

1

2

�
to Schröder's equation � � �= exp.

Ecalle and Schmeling (among others) studied this type of functions, along with other very fast
growing / slowly growing functions E!�; L!� such that for r� 1, we have

E!�+1(r+1) = E!�(E!�+1(r));
L!�+1(L!�(r)) = L!�+1(r)¡ 1;

L!�(E!�(r))=E!�(L!�(r)) = r:

On R, one is limited to small values of � (e.g. finite). But on No, we can take any �2On!



Real hyperexponentiation 16/20

There is a strictly increasing analytic map E!: [a;+1)¡!R which solves AAAAAAAAAbbbbbbbbbeeeeeeeeelllllllll'''''''''sssssssss eeeeeeeeeqqqqqqqqquuuuuuuuuaaaaaaaaatttttttttiiiiiiiiiooooooooonnnnnnnnn:

8r >a;E!(r+1)= exp(E!(r)): (5)

Theorem [KNESER - 1949]

We have E!(r)> expn(r) for r� 1, for all n2N. We call E! a hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrreeeeeeeeexxxxxxxxxpppppppppooooooooonnnnnnnnneeeeeeeeennnnnnnnntttttttttiiiiiiiiiaaaaaaaaalllllllll function.

This also yields an analytic solution r 7!E!
¡
L!(r)+

1

2

�
to Schröder's equation � � �= exp.
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Logarithmic hyperseries 17/20

There is a strong subfield L�No of lllllllllooooooooogggggggggaaaaaaaaarrrrrrrrriiiiiiiiittttttttthhhhhhhhhmmmmmmmmmiiiiiiiiiccccccccc hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrrssssssssseeeeeeeeerrrrrrrrriiiiiiiiieeeeeeeeesssssssss, built upon transfinite products

l�
Y
<�

`
l (formally l is a map �¡!R;  7¡! l),

equipped with a strong derivation @:L¡!L and a composition law �:L�L>R¡!L with:

� (L; @) is closed under derivation and integration.

� each f 2L has Taylor expansions around each point, with radius 1.

Logarithmic hyperseries [VAN DEN DRIES, VAN DER HOEVEN, KAPLAN - 2018]

Each function f 7¡! `!� � f behaves similarly to the real function L!� (e.g. for �2N). For all
ordinals ; �, we have generative identities:

@(`) =
Y
�<

`�
¡1, e.g. @(`!)=

Y
n2N

`n
¡1

`!�+1 � `!� = `!�+1¡ 1;
`!�pmp+ � � �+!�0m0 = `!�0

�m0 � � � � � `!�p
�mp: (decreasing Cantor normal form)
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Hyperserial fields 18/20

A hhhhhhhhhyyyyyyyyypppppppppeeeeeeeeerrrrrrrrrssssssssseeeeeeeeerrrrrrrrriiiiiiiiiaaaaaaaaalllllllll fififififififififieeeeeeeeelllllllllddddddddd is a strong field T together with an action �:L�T>R¡!T of L on
T by monotonous, Taylor expandable functions (with a few axiomatic properties).

Definition

In particular L is a hyperserial field. Say that T is closed if for each � 2On, the function
T>R¡!T>R ; s 7! `!� � s is bijective.

There is a closed extension �:T¡!T~ which is initial among closed extensions of T.

Theorem [B., VAN DER HOEVEN, KAPLAN - 2021]

T ¡!� T~ closed

'& # 9! 
U closed

The composition L�T>R¡!T extends uniquely into a composition L~ �T>R¡!T~ .

Work in progress [B.]

(L~ >R; �; <) is a linearly bi-ordered group in which any two positive elements are conjugate.

Work in progress [B.]
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Back to No 19/20

There is a composition law �:L�No>R¡!No for which (No;�) is a closed hyperserial field.

Theorem [B., VAN DER HOEVEN - 2021]

The extension �:L~ �No>R¡!No yields a FSF containing such functions as

exp!�; log!� for �2On : �transfinite iterates� of exp and log.
expr := exp! � (log!+ r); r2R : fractional iterates of exp, e.g. exp /1 2 is the

unique solution of � � �= exp, and fexpr : r2Rg
is the set of solutions of � � exp= exp � �.

We have L~ (No. Indeed [B., VAN DER HOEVEN - 2019], there are numbers a2No with

a= !
p

+e log!
p

+e
log2!

p
+e

� ��

2/ L~ :

Those are good candidate solutions to the functional equation

�= !
p

+ exp(� � log!):
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Thank you!


