Arithmetics and analytics of surreal numbers*

05-15-2021

Based on joint work with Elliot Kaplan, Vincenzo Mantova, and Joris van der Hoeven.

[^0]Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<0 n}$ whose depths are arbitrary ordinals.

Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<0 n}$ whose depths are arbitrary ordinals.

Conway's class No of surreal numbers. Underlying order: lexicographically ordered complete binary tree $\{-1,1\}^{<0 n}$ whose depths are arbitrary ordinals.

Simplicity: a is simpler than b, written $a \sqsubseteq b$, if there is a path from a to b in the tree.

Fundamental property of (No, \leqslant, \sqsubseteq)

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{\mathbf{N o} \mid \varnothing\}>\{\mathbf{N o} \mid \varnothing\}$!)

Fundamental property of (No, $\leqslant, \sqsubseteq)$

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{\mathbf{N o} \mid \varnothing\}>\{\mathbf{N o} \mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$. So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Fundamental property of (No, $\leqslant, \sqsubseteq)$

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{\mathbf{N o} \mid \varnothing\}>\{\mathbf{N o} \mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$. So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [CONWAY - 1976]

Inductive definition of the sum $a+b$ of numbers a, b :

Induction hypothesis: $a_{L}+b, a+b_{L}$ and $a+b_{R}, a_{R}+b$ are defined.

Fundamental property of (No, $\leqslant, \sqsubseteq)$

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{\mathbf{N o} \mid \varnothing\}>\{\mathbf{N o} \mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$. So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [CONWAY - 1976]

Inductive definition of the sum $a+b$ of numbers a, b :
By definition,

$$
\underset{<a}{a_{L}}+b, a+\underset{<b}{b_{L}}
$$

and

$$
\begin{gathered}
a+b_{R}, a_{R}+b \\
>b>a
\end{gathered}
$$

Fundamental property of (No, $\leqslant, \sqsubseteq)$

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{\mathbf{N o} \mid \varnothing\}>\{\mathbf{N o} \mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$. So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [CONWAY - 1976]

Inductive definition of the sum $a+b$ of numbers a, b :
We want

$$
a_{L}+b, a+b_{L} \quad \text { and }
$$

$$
\begin{gathered}
a+b_{R}, a_{R}+b . \\
>a+b \xrightarrow{>a+b}
\end{gathered}
$$

Fundamental property of (No, $\leqslant, \sqsubseteq)$

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{\mathbf{N o} \mid \varnothing\}>\{\mathbf{N o} \mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$. So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [CONWAY - 1976]

Inductive definition of the sum $a+b$ of numbers a, b. We thus set

$$
a+b:=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\} .
$$

Fundamental property of ($\mathbf{N o}, \leqslant, \sqsubseteq$)

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{$ No $\mid \varnothing\}>\{$ No $\mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [CONWAY - 1976]

Inductive definition of the sum $a+b$ of numbers a, b. We have

$$
a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\} .
$$

Similar equations exist for $-a, a b, a / b .(\mathbf{N o},+, \times)$ has the same first-order properties as \mathbb{R}.

Fundamental property of (No, \leqslant, \sqsubseteq)

For all sets of numbers L, R with $L<R$, there is a unique \sqsubseteq-minimal number $\{L \mid R\}$ with

$$
L<\{L \mid R\}<R .
$$

In particular No is not a set (mind the Burali-Forti like paradox $\{$ No $\mid \varnothing\}>\{$ No $\mid \varnothing\}$!)

Well-founded order

For $a \in \mathbf{N o}$, we have two sets $a_{L}:=\{b \in \mathbf{N o}: b<a, b \sqsubseteq a\}$ and $a_{R}:=\{b \in \mathbf{N o}: b>a, b \sqsubseteq a\}$.
So $a=\left\{a_{L} \mid a_{R}\right\}$. The partial order $(\mathbf{N o}, \sqsubseteq)$ is well-founded \longrightarrow inductive definitions.

Surreal arithmetic [ConWAY - 1976]

Inductive definition of the sum $a+b$ of numbers a, b. We have

$$
a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\} .
$$

Similar equations exist for $-a, a b, a / b .(\mathbf{N o},+, \times)$ has the same first-order properties as \mathbb{R}.
Strength: \quad No is spherically complete \rightarrow numbers can be represented as transfinite sums \rightarrow certain transfinite sums exist on No

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
1+1=\{0 \mid \varnothing\}+\{0 \mid \varnothing\}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{0+1,1+0 \mid \varnothing\}
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{0+\mathbf{1}, 1+0 \mid \varnothing\} \\
\mathbf{0}+\mathbf{1} & =\{\varnothing \mid \varnothing\}+\{0 \mid \varnothing\}
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{0+1,1+0 \mid \varnothing\} \\
0+\mathbf{1} & =\{\varnothing \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{\mathbf{0}+\mathbf{0} \mid \varnothing\}
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{\mathbf{0}+\mathbf{1}, 1+0 \mid \varnothing\} \\
\mathbf{0}+\mathbf{1} & =\{\varnothing \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{\mathbf{0}+\mathbf{0} \mid \varnothing\} \\
\mathbf{0}+\mathbf{0} & =\{\varnothing \mid \varnothing\}+\{\varnothing \mid \varnothing\}
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{0+\mathbf{1}, 1+0 \mid \varnothing\} \\
\mathbf{0}+\mathbf{1} & =\{\varnothing \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{\mathbf{0}+\mathbf{0} \mid \varnothing\} \\
\mathbf{0}+\mathbf{0} & =\{\varnothing \mid \varnothing\}+\{\varnothing \mid \varnothing\} \\
& =\{\varnothing \mid \varnothing\} \\
& =0
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{0+1,1+0 \mid \varnothing\} \\
0+1 & =\{\varnothing \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{0 \mid \varnothing\} \\
& =1
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{1 \mid \varnothing\} \\
& =\{0,1 \mid \varnothing\} \\
& =2
\end{aligned}
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{1 \mid \varnothing\} \\
& =\{0,1 \mid \varnothing\} \\
& =2
\end{aligned}
$$

We beat Principia Mathematica! Since No is a strong real-closed field, we have exotic numbers

$$
\varepsilon_{0}+\frac{\omega^{\omega}}{\pi\left(\omega^{3 / 2}-1\right)^{2}-1}+2 \omega^{\frac{1}{2}}+3 \omega^{\frac{1}{3}}+\cdots
$$

Each ordinal $\alpha \in \mathbf{O n}$ is inductively identified with $\{\beta: \beta<\alpha \mid \varnothing\}$, so

$$
0=\{\varnothing \mid \varnothing\} \quad 1=\{0 \mid \varnothing\} \quad 2=\{0,1 \mid \varnothing\} \quad \omega=\{\mathbb{N} \mid \varnothing\}
$$

Recall that $a+b=\left\{a_{L}+b, a+b_{L} \mid a+b_{R}, a_{R}+b\right\}$. Let us check that $1+1=2$.

$$
\begin{aligned}
1+1 & =\{0 \mid \varnothing\}+\{0 \mid \varnothing\} \\
& =\{1 \mid \varnothing\} \\
& =\{0,1 \mid \varnothing\} \\
& =2
\end{aligned}
$$

We beat Principia Mathematica! Since No is a strong real-closed field, we have exotic functions

$$
x \longmapsto \exp _{\omega}(x)+\frac{\exp (x)}{\pi\left(x^{3 / 2}-1\right)^{2}-1}+2 x^{\frac{1}{2}}+3 x^{\frac{1}{3}}+.
$$

An integer part

Omnific integers

Conway defined the strong subring Oz of omnific integers. We have

$$
\mathbf{O} \mathbf{z}=\{x \in \mathbf{N o}: \quad x=\{x-1 \mid x+1\}\} .
$$

The additive group $\langle\mathrm{On}\rangle$ generated by ordinals is contained in Oz , and Oz is an integer part: for all $x \in \mathbf{N o}$, there is a unique $z \in \mathbf{O z}$ with $z \leqslant x<z+1$. In fact $\mathbf{N o}=\operatorname{Frac}(\mathbf{O z})$.

An integer part

Omnific integers

Conway defined the strong subring Oz of omnific integers. We have

$$
\mathbf{O} \mathbf{z}=\{x \in \mathbf{N o}: x=\{x-1 \mid x+1\}\} .
$$

The additive group $\langle\mathrm{On}\rangle$ generated by ordinals is contained in Oz , and Oz is an integer part: for all $x \in \mathbf{N o}$, there is a unique $z \in \mathbf{O z}$ with $z \leqslant x<z+1$. In fact $\mathbf{N o}=\operatorname{Frac}(\mathbf{O z})$.
[Berarducci - 1999]. The number $\omega+\omega^{1 / 2}+\omega^{1 / 3}+\cdots+1$ is prime in Oz .

Omnific integers

Conway defined the strong subring Oz of omnific integers. We have

$$
\mathbf{O} \mathbf{z}=\{x \in \mathbf{N o}: x=\{x-1 \mid x+1\}\} .
$$

The additive group $\langle\mathrm{On}\rangle$ generated by ordinals is contained in Oz , and Oz is an integer part: for all $x \in \mathbf{N o}$, there is a unique $z \in \mathbf{O z}$ with $z \leqslant x<z+1$. In fact $\mathbf{N o}=\operatorname{Frac}(\mathbf{O z})$.
[Berarducci - 1999]. The number $\omega+\omega^{1 / 2}+\omega^{1 / 3}+\cdots+1$ is prime in Oz.

Some open questions.

- Factorization theorem in Oz ? (partial results in $\mathbb{R}\left[\left[\omega^{\mathbb{R}^{>0}}\right]\right]+\mathbb{Z}$ by Mantova)
- Can one characterize prime numbers in Oz ?
- Given $z \in \mathbf{O z}$, how does the order type $\pi(z) \in \mathbf{O n}$ of $\{y: y \sqsubseteq z$ and y is prime $\}$ behave?
- Can we define a subring \mathbb{Z} of No such that $(\mathbf{N o}, \mathbb{Z})$ and (\mathbb{R}, \mathbb{Z}) have the same properties? - Gödel asks: how would we even know?

Imagine there existed a scale containing "regular" and "simple" functions, building blocks, such that any regular function can be asymptotically (at $+\infty$) described by combining those blocks.

Imagine there existed a scale containing "regular" and "simple" functions, building blocks, such that any regular function can be asymptotically (at $+\infty$) described by combining those blocks.
Real-analytic functions: monomials x^{n} as building blocks.

$$
\begin{aligned}
1+x^{-1}+x^{-2}+\cdots & \equiv \frac{x}{x-1} \\
& \equiv \exp \\
\sum_{n \in \mathbb{N}} n!x^{-n} & \equiv \mathrm{e}^{\frac{1}{x}}
\end{aligned}
$$

Imagine there existed a scale containing "regular" and "simple" functions, building blocks, such that any regular function can be asymptotically (at $+\infty$) described by combining those blocks.

Real-analytic functions: monomials x^{n} as building blocks.

$$
\begin{aligned}
1+x^{-1}+x^{-2}+\cdots & \equiv \frac{x}{x-1} \\
& \equiv \exp \\
\sum_{n \in \mathbb{N}} n!x^{-n} & \equiv \mathrm{e}^{\frac{1}{x}}
\end{aligned}
$$

Transseriable functions: exp and \log as building blocks.

$$
\begin{aligned}
1+x^{-1}+x^{-2}+\cdots+\mathrm{e}^{\frac{1}{x^{2}}} & \equiv \frac{x}{x-1}+\mathrm{e}^{\frac{1}{x^{2}}} \\
\log x+\log _{2} x+\log _{3} x+\cdots & \equiv ?
\end{aligned}
$$

Imagine there existed a scale containing "regular" and "simple" functions, building blocks, such that any regular function can be asymptotically (at $+\infty$) described by combining those blocks. Real-analytic functions: monomials x^{n} as building blocks.

$$
\begin{aligned}
1+x^{-1}+x^{-2}+\cdots & \equiv \frac{x}{x-1} \\
& \equiv \exp \\
\sum_{n \in \mathbb{N}} n!x^{-n} & \equiv \mathrm{e}^{\frac{1}{x}}
\end{aligned}
$$

Transseriable functions: exp and \log as building blocks.

$$
\begin{aligned}
1+x^{-1}+x^{-2}+\cdots+\mathrm{e}^{\frac{1}{x^{2}}} & \equiv \frac{x}{x-1}+\mathrm{e}^{\frac{1}{x^{2}}} \\
\log x+\log _{2} x+\log _{3} x+\cdots & \equiv ?
\end{aligned}
$$

Ecalle's growth scale, Grevey $\alpha<\omega^{\omega}$ functions: e.g. very slowly growing functions L with

$$
\log L^{\prime} \approx \log x+\log _{2} x+\log _{3} x+\cdots
$$

But $L+\delta$ for $\delta=O(1)$ also satisfies this. How to single out "simple" building blocks?

id
$\mathrm{id}+1$
$\mathrm{id}+2$
\vdots
2 id
$2 \mathrm{id}+1$
\vdots
3 id
\vdots
id^{2}
\vdots
\exp
$\exp \circ \exp$
\vdots

A simple scale.

id
$\mathrm{id}+1$
\vdots
2 id
\vdots
id^{2}
\vdots
\exp

(discarding iterates)

id
\vdots
$\mathrm{id}+\frac{1}{\mathrm{id}}$
\vdots
$\mathrm{id}+\frac{\log }{\mathrm{id}}$
\vdots
$\mathrm{id}+1$
\vdots
2 id
\vdots
$\mathrm{id}{ }^{2}$
\vdots
$\exp ^{\circ} \circ \log ^{2}$
\vdots
$\exp _{2} \circ\left(\log _{2}^{2}\right)$
\vdots
$\exp ^{2}$

(adding intermediate asymptotics)

Looking for a building block between L and R.

ω
\vdots
$\omega+\omega^{-1}$
\vdots
$\omega+1$
\vdots
2ω
3ω
$\left.\vdots \mathrm{~N} \omega \left\lvert\, \omega^{1+\frac{1}{N+1}}\right.\right\}$
\vdots
$\omega^{3 / 2}$
ω^{2}
ω^{2}
$\omega^{\omega^{2 / \omega}}$
\vdots
ω^{ω}

A portion of the surreal scale containing

ω
\vdots
$\omega+\omega^{-1}$
\vdots
$\omega+1$
\vdots
2ω
\vdots
$\omega^{1+\omega^{-1}}$
\vdots
ω^{2}
\vdots
$\omega^{2 / \omega}$
\vdots
ω^{ω}

... but those are no longer real-valued functions.
Surreal-valued ones then? What kind?

A field of real functions is a field \mathcal{H} of germs at $+\infty$ of real-valued functions, closed under derivation and composition. E.g. rational functions (not meromorphic functions: they may have zeroes at $+\infty$), or germs of functions definable using,$+ \times$ and exp and log.

A field of real functions is a field \mathcal{H} of germs at $+\infty$ of real-valued functions, closed under derivation and composition. E.g. rational functions (not meromorphic functions: they may have zeroes at $+\infty$), or germs of functions definable using,$+ \times$ and exp and log.

For $f \in \mathcal{H}$, we must have $f \neq 0$ at $+\infty$, hence by continuity $f>0$ at $+\infty$ or $f<0$ at $+\infty$. So \mathcal{H} is an ordered field. Moreover f is either constant or strictly monotonous (since $f^{\prime} \in \mathcal{H}$).

A field of real functions is a field \mathcal{H} of germs at $+\infty$ of real-valued functions, closed under derivation and composition. E.g. rational functions (not meromorphic functions: they may have zeroes at $+\infty$), or germs of functions definable using,$+ \times$ and exp and log.

For $f \in \mathcal{H}$, we must have $f \neq 0$ at $+\infty$, hence by continuity $f>0$ at $+\infty$ or $f<0$ at $+\infty$. So \mathcal{H} is an ordered field. Moreover f is either constant or strictly monotonous (since $f^{\prime} \in \mathcal{H}$).

As a differential ordered field

\mathcal{H} is in an H-field with small derivation as per Aschenbrenner and van den Dries.
This means that we have $\partial(f)>0$ whenever $f>\mathbb{R}$ and $\lim \partial(f)=0$ if $\lim f=0$.

With the compositional structure $0: \mathcal{H} \times \mathcal{H}^{>\mathbb{R}} \longrightarrow \mathcal{H}$ (besides associativity)

- Each $f \longmapsto f \circ g: \mathcal{H} \longrightarrow \mathcal{H}$ for a fixed $g \in \mathcal{H}^{>\mathbb{R}}$ is an endomorphism of ordered rings.
- Each $g \longmapsto f \circ g: \mathcal{H}^{>\mathbb{R}} \longrightarrow \mathcal{H}$ for a fixed $f \in \mathcal{H}$ is monotonous.
- Each $f \in \mathcal{H}$ has Taylor expansions around each $g \in \mathcal{H}^{>\mathbb{R}}$: when $\delta \prec \frac{f \circ g}{f^{\prime} \circ g}$, we have

$$
f \circ(g+\delta)-\sum_{k=0}^{n} \frac{f^{(k)} \circ g}{k!} \delta^{k} \prec\left(f^{(n+1)} \circ g\right) \delta^{n+1}, \quad n \in \mathbb{N} .
$$

Definition

A field of surreal functions (henceforth FSF) is a strong subfield $\mathcal{F} \subseteq$ No together with a strong derivation $\partial: \mathcal{F} \rightarrow \mathcal{F}$ such that (\mathcal{F}, ∂) is an H-field and an associative map \circ : $\mathcal{F} \times \mathbf{N o}{ }^{>\mathbb{R}} \rightarrow$ No with $\mathcal{F} \circ \mathcal{F}>\mathbb{R} \subseteq \mathcal{F}$ such that

- Each $\mathcal{F} \longrightarrow \mathbf{N o} ; f \mapsto f \circ x$ for fixed $x \in \mathbf{N o}^{>\mathbb{R}}$ is a strong morphism of ordered rings.
- Each $\mathbf{N o}{ }^{>\mathbb{R}} \rightarrow \mathbf{N o} ; x \mapsto f \circ x$ for fixed $f \in \mathcal{F}>\mathbb{R}$ is strictly increasing.
- For all $f \in \mathcal{F}, x, \delta \in$ No with $x>\mathbb{R}, \delta \prec x$ and $\delta \prec \frac{\mathfrak{m} \circ x}{\partial(\mathfrak{m}) \circ x}$ for all $\mathfrak{m} \in \operatorname{supp} f$, we have

$$
f \circ(x+\delta)=\sum_{k \in \mathbb{N}} \frac{\partial^{k}(f) \circ x}{k!} \delta^{k}
$$

Closure under functional equations

Other interesting properties which are not imposed:

```
Neutral element: An id \(\in \mathcal{F}>\mathbb{R}\) with
\(\operatorname{id} \circ x=x \forall x \in \mathbf{N o}{ }^{>R}\)
    \(f \circ \mathrm{id}=f \forall f \in \mathcal{F}\).
Inverses: For each \(f \in \mathcal{F}>\mathbb{R}\), an \(f^{\text {inv }} \in \mathcal{F}>\mathbb{R}\) with
\(f \circ f^{\text {inv }}=f^{\text {inv }} \circ f=\mathrm{id}\).
Conjugates: For all \(f, g>\mathrm{id}\), an \(h \in \mathcal{F}>\mathbb{R}\) with
\[
h \circ f=g \circ h .
\]
```

The goal of my PhD is to define a nice FSF on No with underlying field No itself.

The goal of my PhD is to define a nice FSF on No with underlying field No itself. For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

The goal of my PhD is to define a nice FSF on No with underlying field No itself. For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

We'll consider $\operatorname{FSFs} \mathcal{F}$ such that for each $f \in \mathcal{F}$, all strictly simpler numbers $a \sqsubset f$ lie in \mathcal{F}. In other words \mathcal{F} will be intial (= downward closed) in (No, $\sqsubseteq)$. Let us start:

The goal of my PhD is to define a nice FSF on No with underlying field No itself. For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

We'll consider $\operatorname{FSFs} \mathcal{F}$ such that for each $f \in \mathcal{F}$, all strictly simpler numbers $a \sqsubset f$ lie in \mathcal{F}. In other words \mathcal{F} will be intial (= downward closed) in (No, $\sqsubseteq)$. Let us start:

Real numbers $r \in \mathbb{R}$ must be constant functions $x \longmapsto r$.

The goal of my PhD is to define a nice FSF on No with underlying field No itself. For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

We'll consider $\operatorname{FSFs} \mathcal{F}$ such that for each $f \in \mathcal{F}$, all strictly simpler numbers $a \sqsubset f$ lie in \mathcal{F}. In other words \mathcal{F} will be intial (= downward closed) in (No, $\sqsubseteq)$. Let us start:

Real numbers $r \in \mathbb{R}$ must be constant functions $x \longmapsto r$.
Cuts in real numbers $\{L \mid R\}$ where $L, R \subseteq \mathbb{R}$ always lie in $\mathbb{R} \cup\left(\mathbb{R} \pm \omega^{ \pm 1}\right)$, so we first have to deal with the number $\omega=\{\mathbb{N} \mid \varnothing\}$ as a function.

The goal of my PhD is to define a nice FSF on No with underlying field No itself. For the sequel of the talk, we'll build larger and larger FSFs in the simplest way possible.

We'll consider $\operatorname{FSFs} \mathcal{F}$ such that for each $f \in \mathcal{F}$, all strictly simpler numbers $a \sqsubset f$ lie in \mathcal{F}. In other words \mathcal{F} will be intial (= downward closed) in (No, $\sqsubseteq)$. Let us start:

Real numbers $r \in \mathbb{R}$ must be constant functions $x \longmapsto r$.
Cuts in real numbers $\{L \mid R\}$ where $L, R \subseteq \mathbb{R}$ always lie in $\mathbb{R} \cup\left(\mathbb{R} \pm \omega^{ \pm 1}\right)$, so we first have to deal with the number $\omega=\{\mathbb{N} \mid \varnothing\}$ as a function.

Since ω is the simplest number with $\omega>n$ for all $n \in \mathbb{N}$, we may ask ourselves:

What is the simplest function $f>n$ for all $n \in \mathbb{N}$?
ω as the identity function
We must have $\partial(\omega)>0$ by H-field properties. So the simplest choice of $\partial(\omega)$ is $1=\{0 \mid \varnothing\}$.

ω as the identity function

We must have $\partial(\omega)>0$ by H-field properties. So the simplest choice of $\partial(\omega)$ is $1=\{0 \mid \varnothing\}$. For $x \in \mathbf{N o}{ }^{>\mathbb{R}}$, we must have $\omega \circ x>\mathbb{N} \circ x=\mathbb{N}$ and $\omega \circ\left(x_{L} \cap \mathbf{N o}^{>\mathbb{R}}\right)<\omega \circ x<\omega \circ x_{R}$. By induction, we obtain

$$
\omega \circ x \sqsupseteq\left\{\mathbb{N}, \omega \circ\left(x_{L} \cap \mathbf{N o}^{>\mathbb{R}}\right) \mid \omega \circ x_{R}\right\}=\left\{\mathbb{N}, x_{L} \cap \mathbf{N} \mathbf{o}^{>\mathbb{R}} \mid x_{R}\right\}=\left\{x_{L} \mid x_{R}\right\}=x .
$$

So ω should be id.

ω as the identity function

We must have $\partial(\omega)>0$ by H-field properties. So the simplest choice of $\partial(\omega)$ is $1=\{0 \mid \varnothing\}$. For $x \in \mathbf{N o}^{>\mathbb{R}}$, we must have $\omega \circ x>\mathbb{N} \circ x=\mathbb{N}$ and $\omega \circ\left(x_{L} \cap \mathbf{N o}^{>\mathbb{R}}\right)<\omega \circ x<\omega \circ x_{R}$. By induction, we obtain

$$
\omega \circ x \sqsupseteq\left\{\mathbb{N}, \omega \circ\left(x_{L} \cap \mathbf{N} \mathbf{o}^{>\mathbb{R}}\right) \mid \omega \circ x_{R}\right\}=\left\{\mathbb{N}, x_{L} \cap \mathbf{N} \mathbf{o}^{>\mathbb{R}} \mid x_{R}\right\}=\left\{x_{L} \mid x_{R}\right\}=x
$$

So ω should be id.
\rightarrow for all $r \in \mathbb{R}$ and $n \in \mathbb{Z}$, the number $r \omega^{n}$ should act as $x \mapsto r x^{n}$.
\rightarrow each Laurent series $a=\sum_{n \in \mathbb{Z}} a_{n} \omega^{n} \in \mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right]$ in ω should act as $x \mapsto \sum_{n \in \mathbb{Z}} a_{n} x^{n}$.

ω as the identity function

We must have $\partial(\omega)>0$ by H-field properties. So the simplest choice of $\partial(\omega)$ is $1=\{0 \mid \varnothing\}$. For $x \in \mathbf{N o}^{>\mathbb{R}}$, we must have $\omega \circ x>\mathbb{N} \circ x=\mathbb{N}$ and $\omega \circ\left(x_{L} \cap \mathbf{N o}^{>\mathbb{R}}\right)<\omega \circ x<\omega \circ x_{R}$. By induction, we obtain

$$
\omega \circ x \sqsupseteq\left\{\mathbb{N}, \omega \circ\left(x_{L} \cap \mathbf{N} \mathbf{o}^{>\mathbb{R}}\right) \mid \omega \circ x_{R}\right\}=\left\{\mathbb{N}, x_{L} \cap \mathbf{N} \mathbf{o}^{>\mathbb{R}} \mid x_{R}\right\}=\left\{x_{L} \mid x_{R}\right\}=x
$$

So ω should be id.
\rightarrow for all $r \in \mathbb{R}$ and $n \in \mathbb{Z}$, the number $r \omega^{n}$ should act as $x \mapsto r x^{n}$.
\rightarrow each Laurent series $a=\sum_{n \in \mathbb{Z}} a_{n} \omega^{n} \in \mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right]$ in ω should act as $x \mapsto \sum_{n \in \mathbb{Z}} a_{n} x^{n}$.

Now what about the number $\omega^{\omega}=\left\{\omega^{n}: n \in \mathbb{N} \mid \varnothing\right\}$?

What is the simplest non polynomially bounded function?

Exponential [GoNSHOR - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The inductive equation

$$
\exp (a):=\left\{\begin{array}{l|l}
\exp \left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \exp \left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} & \frac{\exp \left(a_{R}\right)}{\left[a_{R}-a\right]_{\mathbb{N}}}, \frac{\exp \left(a_{L}\right)}{\left[a_{L}-a\right]_{2 \mathbb{N}+1}}
\end{array}\right\}
$$

defines an isomorphism $(\mathbf{N o},+,<) \rightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$.

Exponential [Gonshor - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The inductive equation

$$
\exp (a):=\left\{\begin{array}{l|l}
\exp \left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \exp \left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} & \frac{\exp \left(a_{R}\right)}{\left[a_{R}-a\right]_{\mathbb{N}}}, \frac{\exp \left(a_{L}\right)}{\left[a_{L}-a\right]_{2 \mathbb{N}+1}}
\end{array}\right\}
$$

defines an isomorphism $(\mathbf{N o},+,<) \rightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$.
We should have $\partial\left(\omega^{\omega}\right)>\partial\left(\omega^{\mathbb{N}}\right)=\mathbb{N} \omega^{\mathbb{N}-1}$ by H-fields axioms. So $\left\{\mathbb{N} \omega^{\mathbb{N}-1} \mid \varnothing\right\}=\omega^{\omega}$ is the simplest value for $\partial\left(\omega^{\omega}\right)$. It follows that exp is the simplest function for ω^{ω}.

Exponential [GoNSHOR - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The inductive equation

$$
\exp (a):=\left\{\begin{array}{l|l}
\exp \left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \exp \left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} & \frac{\exp \left(a_{R}\right)}{\left[a_{R}-a\right]_{\mathbb{N}}}, \frac{\exp \left(a_{L}\right)}{\left[a_{L}-a\right]_{2 \mathbb{N}+1}}
\end{array}\right\}
$$

defines an isomorphism $(\mathbf{N o},+,<) \rightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$.
We should have $\partial\left(\omega^{\omega}\right)>\partial\left(\omega^{\mathbb{N}}\right)=\mathbb{N} \omega^{\mathbb{N}-1}$ by H-fields axioms. So $\left\{\mathbb{N} \omega^{\mathbb{N}-1} \mid \varnothing\right\}=\omega^{\omega}$ is the simplest value for $\partial\left(\omega^{\omega}\right)$. It follows that exp is the simplest function for ω^{ω}. Closing $\mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right]$ under exp, log and transfinite sums, we obtain a field \mathbb{T}.

Exponential [GoNSHOR - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The inductive equation

$$
\exp (a):=\left\{\exp \left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \exp \left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} \left\lvert\, \frac{\exp \left(a_{R}\right)}{\left[a_{R}-a\right]_{\mathbb{N}}}\right., \frac{\exp \left(a_{L}\right)}{\left[a_{L}-a\right]_{2 \mathbb{N}+1}}\right\}
$$

defines an isomorphism $(\mathbf{N o},+,<) \rightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$.
We should have $\partial\left(\omega^{\omega}\right)>\partial\left(\omega^{\mathbb{N}}\right)=\mathbb{N} \omega^{\mathbb{N}-1}$ by H-fields axioms. So $\left\{\mathbb{N} \omega^{\mathbb{N}-1} \mid \varnothing\right\}=\omega^{\omega}$ is the simplest value for $\partial\left(\omega^{\omega}\right)$. It follows that exp is the simplest function for ω^{ω}. Closing $\mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right]$ under exp, log and transfinite sums, we obtain a field \mathbb{T}.

Theorem [Berarducci and Mantova - 2019, Schmeling - 2001]

The function $\circ: \mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right] \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ extends uniquely as a function $\circ: \mathbb{T} \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ which is compatible with exp, \log and transfinite sums.

Exponential [GoNSHOR - 1986]

For $a \in \mathbf{N o}$ and $n \in \mathbb{N}$, set $[a]_{n}:=\sum_{k \leqslant n} \frac{a^{k}}{k!}$. The inductive equation

$$
\exp (a):=\left\{\exp \left(a_{L}\right)\left[a-a_{L}\right]_{\mathbb{N}}, \exp \left(a_{R}\right)\left[a-a_{R}\right]_{2 \mathbb{N}+1} \left\lvert\, \frac{\exp \left(a_{R}\right)}{\left[a_{R}-a\right]_{\mathbb{N}}}\right., \frac{\exp \left(a_{L}\right)}{\left[a_{L}-a\right]_{2 \mathbb{N}+1}}\right\}
$$

defines an isomorphism ($\mathbf{N o},+,<) \rightarrow\left(\mathbf{N o}^{>0}, \times,<\right)$.
We should have $\partial\left(\omega^{\omega}\right)>\partial\left(\omega^{\mathbb{N}}\right)=\mathbb{N} \omega^{\mathbb{N}-1}$ by H-fields axioms. So $\left\{\mathbb{N} \omega^{\mathbb{N}-1} \mid \varnothing\right\}=\omega^{\omega}$ is the simplest value for $\partial\left(\omega^{\omega}\right)$. It follows that exp is the simplest function for ω^{ω}. Closing $\mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right]$ under exp, log and transfinite sums, we obtain a field \mathbb{T}.

Theorem [Berarducci and Mantova - 2019, Schmeling - 2001]

The function $\circ: \mathbb{R}\left[\left[\omega^{\mathbb{Z}}\right]\right] \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ extends uniquely as a function $\circ: \mathbb{T} \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ which is compatible with exp, \log and transfinite sums.

We have $\exp _{n}(\omega)=\omega^{\cdot \cdot \omega}$ (n times) for all $n \in \mathbb{N}$. So what about $\varepsilon_{0}=\left\{\omega, \omega^{\omega}, \omega^{\omega^{\omega}}, \ldots \mid \varnothing\right\}$? What is the simplest transexponential function on No?

Further properties of a FSF with $\exp (\omega), \log (\omega) \in \mathcal{F}$
a) If $f>\exp _{\mathbb{N}}$, then $\forall n, f(\log \omega) \circ f \cdots\left(\log _{n} \omega\right) \circ f<\partial(f)<f(\log \omega) \circ f \cdots\left(\log _{n} \omega\right) \circ f$.
b) If $f>\mathrm{id}+\mathbb{R}$, then $f \circ(\mathrm{id}+r)>f+\mathbb{R}$ for all $r \in \mathbb{R}^{>0}$,

Further properties of a FSF with $\exp (\omega), \log (\omega) \in \mathcal{F}$

a) If $f>\exp _{\mathbb{N}}$, then $\forall n, f(\log \omega) \circ f \cdots\left(\log _{n} \omega\right) \circ f<\partial(f)<f(\log \omega) \circ f \cdots\left(\log _{n} \omega\right) \circ f$.
b) If $f>\mathrm{id}+\mathbb{R}$, then $f \circ(\mathrm{id}+r)>f+\mathbb{R}$ for all $r \in \mathbb{R}^{>0}$,

Value of $\partial\left(\varepsilon_{0}\right)$: By a), the simplest value for $\partial\left(\varepsilon_{0}\right)$ is $\prod_{n \in \mathbb{N}} \log _{n}\left(\varepsilon_{0}\right)=\mathrm{e}^{\sum_{n \in \mathbb{N}} \log _{n+1}\left(\varepsilon_{0}\right)}$.
Value of $\varepsilon_{0} \circ(\boldsymbol{\omega}+1)$: We have $\log _{\mathbb{N}}\left(\varepsilon_{0}\right)>\omega+\mathbb{R}$. So b) yields $\varepsilon_{0} \circ(\omega+1)>\exp _{n}\left(\log _{n}\left(\varepsilon_{0}\right)+\right.$ 1) for all $n \in \mathbb{N}$. But $\left\{\exp _{n}\left(\log _{n}\left(\varepsilon_{0}\right)+1\right): n \in \mathbb{N} \mid \varnothing\right\}=\exp \left(\varepsilon_{0}\right)$. Thus ε_{0} should satisfy

$$
\begin{equation*}
\varepsilon_{0} \circ(x+1)=\exp \left(\varepsilon_{0} \circ x\right) \quad \forall x \in \mathbf{N o}^{>\mathbb{R}} \tag{2}
\end{equation*}
$$

Further properties of a FSF with $\exp (\omega), \log (\omega) \in \mathcal{F}$

a) If $f>\exp _{\mathbb{N}}$, then $\forall n, f(\log \omega) \circ f \cdots\left(\log _{n} \omega\right) \circ f<\partial(f)<f(\log \omega) \circ f \cdots\left(\log _{n} \omega\right) \circ f$.
b) If $f>\mathrm{id}+\mathbb{R}$, then $f \circ(\mathrm{id}+r)>f+\mathbb{R}$ for all $r \in \mathbb{R}^{>0}$,

Value of $\partial\left(\varepsilon_{0}\right)$: By a), the simplest value for $\partial\left(\varepsilon_{0}\right)$ is $\prod_{n \in \mathbb{N}} \log _{n}\left(\varepsilon_{0}\right)=\mathrm{e}^{\sum_{n \in \mathbb{N}} \log _{n+1}\left(\varepsilon_{0}\right)}$.
Value of $\varepsilon_{0} \circ(\boldsymbol{\omega}+1)$: We have $\log _{\mathbb{N}}\left(\varepsilon_{0}\right)>\omega+\mathbb{R}$. So b) yields $\varepsilon_{0} \circ(\omega+1)>\exp _{n}\left(\log _{n}\left(\varepsilon_{0}\right)+\right.$ 1) for all $n \in \mathbb{N}$. But $\left\{\exp _{n}\left(\log _{n}\left(\varepsilon_{0}\right)+1\right): n \in \mathbb{N} \mid \varnothing\right\}=\exp \left(\varepsilon_{0}\right)$. Thus ε_{0} should satisfy

$$
\begin{equation*}
\varepsilon_{0} \circ(x+1)=\exp \left(\varepsilon_{0} \circ x\right) \quad \forall x \in \mathbf{N o}^{>}>\mathbb{R} \tag{3}
\end{equation*}
$$

Theorem [B. van der Hoeven, Mantova - 2020]

There is a simplest strictly increasing solution $\exp _{\omega}: \mathbf{N o}^{>, \succ} \longrightarrow \mathbf{N o}^{>, \succ}$ of (3) with

$$
\exp _{\omega}(x+\delta)=\sum_{k \in \mathbb{N}} \frac{\exp _{\omega}^{(k)}(x)}{k!} \delta^{k}
$$

for all $x \in \mathbf{N o}^{>\mathbb{R}}$ and $\delta \prec \frac{\exp _{\omega}(x)}{\prod_{n \in \mathbb{N}} \log _{n}(\exp \omega(x))}$.

Theorem [Kneser - 1949]

There is a strictly increasing analytic map $E_{\omega}:[a,+\infty) \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\begin{equation*}
\forall r>a, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right) \tag{4}
\end{equation*}
$$

We have $E_{\omega}(r)>\exp _{n}(r)$ for $r \gg 1$, for all $n \in \mathbb{N}$. We call E_{ω} a hyperexponential function.

Theorem [Kneser - 1949]

There is a strictly increasing analytic map $E_{\omega}:[a,+\infty) \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\begin{equation*}
\forall r>a, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right) \tag{5}
\end{equation*}
$$

We have $E_{\omega}(r)>\exp _{n}(r)$ for $r \gg 1$, for all $n \in \mathbb{N}$. We call E_{ω} a hyperexponential function. This also yields an analytic solution $r \mapsto E_{\omega}\left(L_{\omega}(r)+\frac{1}{2}\right)$ to Schröder's equation $\phi \circ \phi=\exp$.

Theorem [Kneser - 1949]

There is a strictly increasing analytic map $E_{\omega}:[a,+\infty) \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\begin{equation*}
\forall r>a, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right) \tag{6}
\end{equation*}
$$

We have $E_{\omega}(r)>\exp _{n}(r)$ for $r \gg 1$, for all $n \in \mathbb{N}$. We call E_{ω} a hyperexponential function. This also yields an analytic solution $r \mapsto E_{\omega}\left(L_{\omega}(r)+\frac{1}{2}\right)$ to Schröder's equation $\phi \circ \phi=\exp$.

Ecalle and Schmeling (among others) studied this type of functions, along with other very fast growing / slowly growing functions $E_{\omega^{\mu}}, L_{\omega^{\mu}}$ such that for $r \gg 1$, we have

$$
\begin{aligned}
E_{\omega^{\mu+1}}(r+1) & =E_{\omega^{\mu}}\left(E_{\omega^{\mu+1}}(r)\right), \\
L_{\omega^{\mu+1}}\left(L_{\omega^{\mu}}(r)\right) & =L_{\omega^{\mu+1}}(r)-1 \\
L_{\omega^{\mu}}\left(E_{\omega^{\mu}}(r)\right)=E_{\omega^{\mu}}\left(L_{\omega^{\mu}}(r)\right) & =r
\end{aligned}
$$

Theorem [Kneser - 1949]

There is a strictly increasing analytic map $E_{\omega}:[a,+\infty) \longrightarrow \mathbb{R}$ which solves Abel's equation:

$$
\begin{equation*}
\forall r>a, E_{\omega}(r+1)=\exp \left(E_{\omega}(r)\right) \tag{7}
\end{equation*}
$$

We have $E_{\omega}(r)>\exp _{n}(r)$ for $r \gg 1$, for all $n \in \mathbb{N}$. We call E_{ω} a hyperexponential function. This also yields an analytic solution $r \mapsto E_{\omega}\left(L_{\omega}(r)+\frac{1}{2}\right)$ to Schröder's equation $\phi \circ \phi=\exp$.

Ecalle and Schmeling (among others) studied this type of functions, along with other very fast growing / slowly growing functions $E_{\omega^{\mu}}, L_{\omega^{\mu}}$ such that for $r \gg 1$, we have

$$
\begin{aligned}
E_{\omega^{\mu+1}}(r+1) & =E_{\omega^{\mu}}\left(E_{\omega^{\mu+1}}(r)\right), \\
L_{\omega^{\mu+1}}\left(L_{\omega^{\mu}}(r)\right) & =L_{\omega^{\mu+1}}(r)-1 \\
L_{\omega^{\mu}}\left(E_{\omega^{\mu}}(r)\right)=E_{\omega^{\mu}}\left(L_{\omega^{\mu}}(r)\right) & =r
\end{aligned}
$$

On \mathbb{R}, one is limited to small values of μ (e.g. finite). But on No, we can take any $\mu \in$ On!

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2018]

There is a strong subfield $\mathbb{L} \subseteq$ No of logarithmic hyperseries, built upon transfinite products

$$
\mathfrak{l} \equiv \prod_{\gamma<\mu} \ell_{\gamma}^{\mathfrak{l}_{\gamma}} \quad\left(\text { formally } \mathfrak{l} \text { is a map } \mu \longrightarrow \mathbb{R} ; \gamma \longmapsto \mathfrak{l}_{\gamma}\right),
$$

equipped with a strong derivation $\partial: \mathbb{L} \longrightarrow \mathbb{L}$ and a composition law $\circ: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with:

- (\mathbb{L}, ∂) is closed under derivation and integration.

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2018]

There is a strong subfield $\mathbb{L} \subseteq$ No of logarithmic hyperseries, built upon transfinite products

$$
\mathfrak{l} \equiv \prod_{\gamma<\mu} \ell_{\gamma}^{\mathfrak{l}_{\gamma}} \quad\left(\text { formally } \mathfrak{l} \text { is a map } \mu \longrightarrow \mathbb{R} ; \gamma \longmapsto \mathfrak{l}_{\gamma}\right),
$$

equipped with a strong derivation $\partial: \mathbb{L} \longrightarrow \mathbb{L}$ and a composition law $\circ: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with:

- (\mathbb{L}, ∂) is closed under derivation and integration.
- each $f \in \mathbb{L}$ has Taylor expansions around each point, with radius 1 .

Logarithmic hyperseries [van den Dries, van der Hoeven, Kaplan - 2018]

There is a strong subfield $\mathbb{L} \subseteq$ No of logarithmic hyperseries, built upon transfinite products

$$
\mathfrak{l} \equiv \prod_{\gamma<\mu} \ell_{\gamma}^{\mathfrak{l}_{\gamma}} \quad\left(\text { formally } \mathfrak{l} \text { is a map } \mu \longrightarrow \mathbb{R} ; \gamma \longmapsto \mathfrak{l}_{\gamma}\right),
$$

equipped with a strong derivation $\partial: \mathbb{L} \longrightarrow \mathbb{L}$ and a composition law $\circ: \mathbb{L} \times \mathbb{L}>\mathbb{R} \longrightarrow \mathbb{L}$ with:

- (\mathbb{L}, ∂) is closed under derivation and integration.
- each $f \in \mathbb{L}$ has Taylor expansions around each point, with radius 1 .

Each function $f \longmapsto \ell_{\omega^{\mu}} \circ f$ behaves similarly to the real function $L_{\omega^{\mu}}$ (e.g. for $\mu \in \mathbb{N}$). For all ordinals γ, μ, we have generative identities:

$$
\begin{aligned}
\partial\left(\ell_{\gamma}\right) & =\prod_{\rho<\gamma} \ell_{\rho}^{-1} \quad \partial\left(\ell_{\omega}\right)=\prod_{n \in \mathbb{N}} \ell_{n}^{-1} \\
\ell_{\omega^{\mu+1}} \circ \ell_{\omega^{\mu}} & =\ell_{\omega^{\mu+1}}-1 \\
\ell_{\omega^{\mu_{p}} m_{p}+\cdots+\omega^{\mu_{0}} m_{0}} & =\ell_{\omega^{\mu_{0}}}^{\circ m_{0}} \circ \cdots \circ \ell_{\omega^{\mu}}^{\mu_{p}}
\end{aligned}
$$

Definition

A hyperserial field is a strong field \mathbb{T} together with an action $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ of \mathbb{L} on \mathbb{T} by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular \mathbb{L} is a hyperserial field. Say that \mathbb{T} is closed if for each $\mu \in \mathbf{O n}$, the function $\mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}} ; s \mapsto \ell_{\omega^{\mu} \circ s}$ is bijective.

Definition

A hyperserial field is a strong field \mathbb{T} together with an action $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ of \mathbb{L} on \mathbb{T} by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular \mathbb{L} is a hyperserial field. Say that \mathbb{T} is closed if for each $\mu \in \mathbf{O n}$, the function $\mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}} ; s \mapsto \ell_{\omega^{\mu} \circ s}$ is bijective.

Theorem [B., Van der Hoeven, Kaplan - 2021]
There is a closed extension $\iota: \mathbb{T} \longrightarrow \tilde{\mathbb{T}}$ which is initial among closed extensions of \mathbb{T}.

Definition

A hyperserial field is a strong field \mathbb{T} together with an action $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ of \mathbb{L} on \mathbb{T} by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular \mathbb{L} is a hyperserial field. Say that \mathbb{T} is closed if for each $\mu \in \mathbf{O n}$, the function $\mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}} ; s \mapsto \ell_{\omega^{\mu} \circ s}$ is bijective.

Theorem [B., Van der Hoeven, Kaplan - 2021]
There is a closed extension $\iota: \mathbb{T} \longrightarrow \tilde{\mathbb{T}}$ which is initial among closed extensions of \mathbb{T}.

Work in progress [B.]
The composition $\mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ extends uniquely into a composition $\tilde{\mathbb{L}} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{T}}$.

Hyperserial fields

Definition

A hyperserial field is a strong field \mathbb{T} together with an action $\circ: \mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ of \mathbb{L} on \mathbb{T} by monotonous, Taylor expandable functions (with a few axiomatic properties).

In particular \mathbb{L} is a hyperserial field. Say that \mathbb{T} is closed if for each $\mu \in \mathbf{O n}$, the function $\mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}^{>\mathbb{R}} ; s \mapsto \ell_{\omega^{\mu} \circ s}$ is bijective.

Theorem [B., van der Hoeven, Kaplan - 2021]
There is a closed extension $\iota: \mathbb{T} \longrightarrow \tilde{\mathbb{T}}$ which is initial among closed extensions of \mathbb{T}.

Work in progress [B.]

The composition $\mathbb{L} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \mathbb{T}$ extends uniquely into a composition $\tilde{\mathbb{L}} \times \mathbb{T}^{>\mathbb{R}} \longrightarrow \tilde{\mathbb{T}}$.

Work in progress [B.]

$\left(\tilde{\mathbb{L}}^{>\mathbb{R}}, \circ,<\right)$ is a linearly bi-ordered group in which any two positive elements are conjugate.

Theorem [B., Van der Hoeven - 2021]

There is a composition law $\circ: \mathbb{L} \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ for which ($\mathbf{N o}, \circ$) is a closed hyperserial field.

Theorem [B., van der Hoeven - 2021]

There is a composition law $\circ: \mathbb{L} \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ for which ($\mathbf{N o}, \circ$) is a closed hyperserial field.
The extension $\circ: \tilde{\mathbb{L}} \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ yields a FSF containing such functions as

$$
\begin{aligned}
\exp _{\omega^{\mu}}, \log _{\omega^{\mu}} \quad \mu \in \mathbf{O n}: & \text { "transfinite iterates" of exp and log } \\
\exp _{r}:=\exp _{\omega} \circ\left(\log _{\omega}+r\right), r \in \mathbb{R}: & \text { fractional iterates of exp, e.g. } \exp _{1 / 2} \text { is the } \\
& \text { unique solution of } \phi \circ \phi=\exp , \operatorname{and}\left\{\exp _{r}: r \in \mathbb{R}\right\} \\
& \text { is the set of solutions of } \phi \circ \exp =\exp \circ \phi .
\end{aligned}
$$

Theorem [B., van der Hoeven - 2021]

There is a composition law $\circ: \mathbb{L} \times \mathbf{N o}>\mathbb{R} \longrightarrow \mathbf{N o}$ for which (No, 0) is a closed hyperserial field.
The extension $\circ: \tilde{\mathbb{L}} \times \mathbf{N o}{ }^{>\mathbb{R}} \longrightarrow \mathbf{N o}$ yields a FSF containing such functions as

$$
\begin{aligned}
\exp _{\omega^{\mu}}, \log _{\omega^{\mu}} \quad \mu \in \mathbf{O n}: & \text { "transfinite iterates" of exp and log } \\
\exp _{r}:=\exp _{\omega} \circ\left(\log _{\omega}+r\right), r \in \mathbb{R}: & \text { fractional iterates of exp, e.g. } \exp _{1 / 2} \text { is the } \\
& \text { unique solution of } \phi \circ \phi=\exp , \operatorname{and}\left\{\exp _{r}: r \in \mathbb{R}\right\} \\
& \text { is the set of solutions of } \phi \circ \exp =\exp \circ \phi .
\end{aligned}
$$

We have $\tilde{\mathbb{L}} \subsetneq$ No. Indeed [B., van der Hoeven - 2019], there are numbers $a \in$ No with

$$
a=\sqrt{\omega}+\mathrm{e}^{\sqrt{\log \omega}+\mathrm{e}^{\sqrt{\log _{2} \omega}+\mathrm{e}^{\cdot}}} \notin \tilde{\mathbb{L}}
$$

Those are good candidate solutions to the functional equation

$$
\phi=\sqrt{\omega}+\exp (\phi \circ \log \omega) .
$$

Thank you!

[^0]: *. This document has been written using GNU $\mathrm{T}_{\mathrm{E}} \mathrm{X}_{\mathrm{MACS}}$; see www.texmacs.org.

