An introduction to first-order logic with emphasis on definability and o-minimality

BY VINCENT BAGAYOKO

November 2022

1 First-order logic

1.1 Structures and signatures

A signature is a family of function symbols $(\underline{f}_i)_{i \in I}$ with arities $\alpha_i \in \mathbb{N}$, together with of one of two types together with a family of relation symbols $(\underline{R}_j)_{j \in J}$ with arities $\beta_i \in \mathbb{N}$. Among the relation symbols, there is always a particular symbol of arity 2 denoted =.

Given a signature $\Sigma = ((\underline{f}_i)_{i \in I}, (\underline{R}_j)_{j \in J})$, a first-order structure for Σ is a set M, together with a family $(f_i)_{i \in I}$ of functions $f_i: \overline{M}^{\alpha_i} \longrightarrow M$ and a family $(R_j)_{j \in J}$ of subsets $R_j \subseteq M^{\beta_j}$ called relations. Each of these defines a specific interpretation of the function and relation symbols. For instance a relation symbol \underline{R}_j of arity $\beta_j = 2$ is interpreted by binary relation $R_j \subseteq M^2$, a function f_i of arity 0 is interpreted as a constant $f_i(\emptyset) \in M$, a relation of arity 1 is interpreted subset of M. The equality symbol is always interpreted as the binary relation of equality on M, i.e. as the diagonal $\{(a, a) \in M^2 : a \in M\}$.

We will consider certain properties of M that pertain to these functions and relations, and which can be stated in a specific language involving symbols for each such function and relation. This language is called a first-order language.

Example 1. For instance, if we want to talk about the properties of the ordered field \mathbb{Q} , then we will take two functions $\mathbb{Q}^2 \longrightarrow \mathbb{Q}$, namely the sum and the product, two constants 0 and 1, and one binary relation, namely the standard ordering on \mathbb{Q} , seen here as the subset $\{(a,b) \in \mathbb{Q}^2 : a < b\}$ of \mathbb{Q}^2 .

Example 2. If we want to talk about the properties of a vector field V over \mathbb{C} , then we'll have the group operation $+: V^2 \longrightarrow V$ on V and, for each complex number $\lambda \in \mathbb{C}$, the scalar multiplication by λ :

$$V \longrightarrow V; x \mapsto \lambda . x.$$

1.2 First-order language over a signature

Consider a fixed signature $\Sigma = ((\underline{f}_i)_{i \in I}, (\underline{R}_j)_{j \in J})$. We then define specific types and sets of *words*, i.e. finite strings of symbols, as follows:

- Variable symbols are purely formal symbols among $x_0, x_1, \ldots, x_n, \ldots$ or y_0, \ldots, y_n, \ldots
- The set \mathcal{T}_{Σ} of **terms** in the signature Σ is the smallest set of finite strings of symbols among variable symbols, parentheses symbols (and) and function symbols $\underline{f}_i, i \in I$, which contains all variable symbols, and such that for all $i \in I$, if $t_1, \ldots, t_{\alpha_i} \in \mathcal{T}_{\Sigma}$, then $\underline{f}_i(t_1, \ldots, t_{\alpha_i}) \in \mathcal{T}_{\Sigma}$.

For instance, if Σ contains two function symbols \underline{f} and \underline{g} of arities 1 and 2 respectively, then the word

$$\underline{f}(\underline{g}(\underline{f}(x_2), x_0))$$

is a term.

• Atomic formulas are words of the form $\underline{R_j}(t_1, \ldots, t_{\beta_j})$ where $j \in J$ and t_1, \ldots, t_{β_j} are terms and $j \in J$. Neg-atomic formulas are words of the form $\neg(\underline{R_j}(t_1, \ldots, t_{\beta_j}))$ where $j \in J$ and t_1, \ldots, t_{β_j} are terms and $j \in J$.

L_Σ-formulas are well-written¹ words involving atomic formulas, parentheses, logical connectives ¬ ("not", negation), ∨ ("or", disjunction), ∧ ("and", conjunction), and quantifiers ∃ ("there exists", existential quantifier), and ∀ ("for all", universal quantifier).

The first-order language \mathcal{L}_{Σ} over this signature is the set of all \mathcal{L}_{Σ} -formulas.

If a symbol of variable occuring in a formula is preceded by a quantifier in one of its occurrences, then we say that it is bound. Otherwise, we say that it is *free*. Usually, we write denote by $\varphi[x_1, \ldots, x_n]$ an \mathcal{L}_{Σ} -formula φ whose free variables are among x_1, \ldots, x_n .

A formula without free variable is called an \mathcal{L}_{Σ} -sentence. Those are the formulas which can be interpreted as true or false in structures (whereas formulas with free variables may have a truth value depending on the value of those variables).

1.3 Prenex form and quantifier-free formulas

An \mathcal{L} -formula is said *quantifier-free* if it contains no occurrence of \exists or \forall . Quantifier-free formulas are thus boolean combinations of atomic formulas, i.e. obtained as conjunctions, disjunctions and negations (and combinations thereof) of atomic formulas.

Proposition 3. Every quantifier-free formula $\varphi[x_1, \ldots, x_k]$ is is logically equivalent² to a formula of the form

$$\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n} \theta_{i,j}[x_1,\ldots,x_k],$$

where $m, n \in \mathbb{N}$, and each $\theta_{i,j}[x_1, \ldots, x_k]$ is either atomic or neg-atomic.

An \mathcal{L}_{Σ} -formula is in *prenex normal form* form if it is, up to permutation of the variable symbols, of the form

$$\Box_1 x_1 (\Box_2 x_2 (\ldots (\Box_n x_n(\theta))))$$

where θ is quantifier-free and \Box_1, \ldots, \Box_n are symbols of quantifiers (i.e. \exists or \forall).

Proposition 4. Every \mathcal{L}_{Σ} -formula is logically equivalent to a formula in prenex normal form.

1.4 Interpretation

We fix a signature Σ and an \mathcal{L}_{Σ} -structure $\mathcal{M} = (M, ...)$. Given a formula $\varphi[x_1, ..., x_n]$ and $a_1, ..., a_n \in M$, we say that $\varphi[a_1, ..., a_n]$ holds in \mathcal{M} if the straightforward interpretation of $\varphi[x_1, ..., x_n]$, where

- each variable symbol $x_k, k \in \{1, \ldots, n\}$ is replaced by a_k ,
- each function symbol f_i is replaced by the function f_i ,
- each term $t(x_1, \ldots, x_n)$ is replaced by the element $t(a_1, \ldots, a_n) \in M$ accordingly,
- each atomic formula $R_j(t_1, \ldots, t_{\beta_j})$ is replaced by the statement:

$$(t_1(a_1,\ldots,a_n),\ldots,t_{\beta_i}(a_1,\ldots,a_n)) \in R_j,$$

each logical combination thereof is evaluated following basic logic,

is true³.

$$\exists ((x_1 \wedge \lor x_3 \,{=}\, \forall x_1 (\neg \forall$$

is (very) badly written, hence not an \mathcal{L}_{Σ} -forumla. On the contrary, the word

$$\exists x_1(x_1 = x_3 \land (\forall x_2((x_2 = x_1) \lor \neg (x_2 = x_3))))$$

is well-written. The formal definition of \mathcal{L}_{Σ} -formulas is by induction on the length of words.

2. The keyword for more information on this logical equivalence is predicate calculus (Prädikatenlogik erster Stufe).

^{1.} Well-written means... well-written, not non-sensical. I leave this undefined and appeal to your experience as mathematicians. For instance, the word

^{3.} This is a very rough statement of Tarski's definition of satisfaction of formulas in structures. There are many subtleties, and one should study a proper introduction to logic before thinking too hard about this definition.

Remark 5. Why *first*-order? Are there higher orders? First here refers to the fact that quantifiers in the language \mathcal{L}_{Σ} only apply to variables which range in elements, and not subsets of the structure. One could also have symbols of variable X_0, \ldots, X_n, \ldots denoting subsets of M, so that a formula in this higher-order language for the structure $(\mathbb{R}, <)$ could state that $(\mathbb{R}, <)$ has the least upper bound property.

But the first-order language does not allow this. It can be shown that there is no set t of sentences in the first-order language over Σ with one binary relation symbol such that \mathcal{L}_{Σ} -structure in which all sentences in T hold are exactly linearly ordered sets with the least upper bound property.

1.5 Quantifier elimination

Consider a first-order signature Σ and an \mathcal{L}_{Σ} -structure \mathcal{M} . We say that \mathcal{M} eliminates quantifiers (or has quantifier elimination) if for every \mathcal{L}_{Σ} -formula $\varphi[x_1, \ldots, x_n]$, there is a quantifier-free \mathcal{L}_{Σ} formula $\theta[x_1, \ldots, x_n]$ such that the following sentence holds in \mathcal{M} :

$$\forall x_1, \dots, \forall x_n (\varphi[x_1, \dots, x_n] \Longleftrightarrow \theta[x_1, \dots, x_n]).$$

There are many tests in order to show that \mathcal{M} eliminates quantifiers. One of the most basic ones is the following

Proposition 6. Assume that for each $n \in \mathbb{N}$ and each quantifier-free formula $\theta[x_0, \ldots, x_n, x_{n+1}]$, there is a quantifier-free formula $\psi[x_0, \ldots, x_n]$ such that the following holds in \mathcal{M} :

 $\forall x_0, \dots, x_n (\exists x_{n+1}(\theta[x_0, \dots, x_n, x_{n+1}]) \Longleftrightarrow \psi[x_0, \dots, x_n]).$

Then \mathcal{M} eliminates quantifiers.

Idea of proof. Prenex normal form + induction.

2 Definability and o-minimality

In this section, we fix a first-order signature Σ and an \mathcal{L}_{Σ} -structure $\mathcal{M} = (M, \ldots)$.

2.1 Definable subsets

Given $n \in \mathbb{N}$, we say that a set X is *definable* in dimension n in \mathcal{M} if $X \subseteq M^n$ and there are an $m \in \mathbb{N}$, a tuple $(a_1, \ldots, a_m) \in M^m$ and a formula $\varphi[x_1, \ldots, x_n, y_1, \ldots, y_n]$ such that

$$X = \varphi[a_1, \ldots, a_n, \mathcal{M}] := \{(b_1, \ldots, b_n) \in \mathcal{M}^n : \varphi[a_1, \ldots, a_m, b_1, \ldots, b_n] \text{ holds in } \mathcal{M}\}.$$

We say that X is definable without quantifiers if $\varphi[x_1, \ldots, x_n, y_1, \ldots, y_n]$ can be taken to be quantifier-free.

Example 7. In $(\mathbb{Z}, +, \times)$, the set N is definable. Indeed, Lagrange's four squares theorem, an integer $n \in \mathbb{Z}$ is positive if and only if it is a sum of for squares of integers. So

$$\mathbb{N} = \{ n \in \mathbb{Z} : \exists x_0, x_1, x_2, x_3 (n = x_0 \times x_0 + x_1 \times x_1 + x_2 \times x_2 + x_3 \times x_3) \text{ holds} \}.$$

The set N is *not* definable without quantifiers. Indeed, recall that quantifier-free formulas are equivalent to boolean combinations of atomic formulas. In $(\mathbb{Z}, +, \times)$, an atomic formula in one free variable $\varphi[x_0]$ is equivalent to an equality $P(x_0) = 0$ where $P[X] \in \mathbb{Z}[X]$. Hence it defines either Z if P = 0, or a finite subset otherwise. In particular, it defines a finite or cofinite⁴ subset of Z. Since the set of finite or cofinite subsets of Z is closed under unions and intersections, any boolean combination ot atomic formulas defines a finite or cofinite subset. So $\varphi[x_0]$ defines a finite or cofinite subset. Since N is neither finite nor cofinite in Z, it cannot be defined by $\varphi[x_0]$.

^{4.} a subset $X \subseteq M^n$ is cofinite if its complement $M^n \setminus X$ in M^n is finite

Remark 8. In fact, in $(\mathbb{Z}, +, \times)$, many things are definable. For instance, every recursively enumerable subset of N is definable in dimension 1 in $(\mathbb{Z}, +, \times)$.

2.2 Formal-geometric correspondence

Here we fix an $m \in \mathbb{N}$, an $n \in \mathbb{N}$ with n > 0, a tuple $a_1, \ldots, a_m \in M$, as well as \mathcal{L}_{Σ} -formulas

$$\varphi = \varphi[x_1, \dots, x_m, y_1, \dots, y_n] \text{ and } \psi = \psi[x_1, \dots, x_m, y_1, \dots, y_n].$$

We have the following list of correspondences between geometric operations on definable sets

$$X := \varphi[a_1, \dots, a_m, \mathcal{M}] \text{ and} Y := \psi[a_1, \dots, a_m, \mathcal{M}],$$

and their defining formulas φ and ψ .

Logical operation on defining formula	Geometric operation on definable set
Negation $\neg \varphi$	Complement $M^n \setminus X$
Disjunction: $(\varphi \lor \psi)$	Union $X \cup Y$
Conjunction: $(\varphi \land \psi)$	Intersection $X \cap Y$
Existential quantifier: $\exists y_n \varphi$	Projection on M^{n-1} .
Universal quantifier: $\forall y_n \varphi$	$\bigcup_{Z \times M \subseteq X} Z$

Thus the theory of definability can be stated in purely geometric terms. This is the spirit of [2]. However, many important results regarding definability (in particular in o-minimality) crucially rely on the interplay between intuitions coming from logic and geometry, algebra, analysis, graph theory, and so on...

2.3 O-minimality

Let $(\Gamma, <)$ be a linearly ordered set⁵. An *interval* in $(\Gamma, <)$ is a subset I of one of the following forms for $a, b \in \Gamma$:

- $\bullet \quad (a,b):=\{\gamma\in \Gamma: a<\gamma< b\},$
- $(-\infty, b) := \{ \gamma \in \Gamma : \gamma < b \},\$
- $\bullet \quad (a,+\infty) := \{\gamma \in \Gamma : a < \gamma\},$
- $(-\infty, +\infty) = \Gamma$,
- $[a,b) := \{ \gamma \in \Gamma : a \leq \gamma < b \},\$
- $(a, b] := \{ \gamma \in \Gamma : a < \gamma \leq b \},\$
- $[a,b] := \{ \gamma \in \Gamma : a \leqslant \gamma \leqslant b \},$
- $(-\infty, b] := \{ \gamma \in \Gamma : \gamma \leq b \},$
- $[a, +\infty) := \{\gamma \in \Gamma : a \leq \gamma\},\$

The first four types of intervals are called open intervals.

Example 9. The set $C := \{q \in \mathbb{Q}^{>0} : q^2 < 2\}$ is not an interval in $(\mathbb{Q}, <)$, whereas

$$\{r \in \mathbb{R}^{>0} : r^2 < 2\} = (0, \sqrt{2})$$

is an interval in $(\mathbb{R}, <)$.

Proposition 10. Let $(\Gamma, <)$ be a linearly ordered set. Then the quantifier-free definable subsets of Γ are exactly the finite unions of intervals in Γ .

^{5.} it is usual to use strict orderings; this is not crucial for results but it does play a role when manipulating formulas since it affects which formulas are atomic: $x_0 \leq x_1$ or $x_0 < x_1$.

Definition 11. A first-order structure $\mathcal{M} = (M, <,...)$ is said **o-minimal** if every definable subset of \mathcal{M} in dimension 1 is a finite union of intervals in (M, <).

Corollary 12. If $(\Gamma, <)$ eliminates quantifiers, then it is o-minimal.

The set C in Example 9 is definable in the ordered group $(\mathbb{Q}^{>0}, \cdot, 1, <)$. This set is not a finite union of intervals, otherwise it would have a least upper bound in $\mathbb{Q}^{>0}$. Therefore $(\mathbb{Q}^{>0}, \cdot, 1, <)$ is *not* o-minimal.

O-minimal ordered fields. In the Fachseminar and in RAG I, we will see examples of o-minimal ordered fields. Here we consider the case of rational numbers. The ordered field $(\mathbb{Q}, +, \times, <)$ is not o-minimal for similar reasons as above. What's more, by a theorem of Julia ROBINSON, the set \mathbb{Z} of integers is definable in $(\mathbb{Q}, +, \times)$. So every definable set in $(\mathbb{N}, +, \times)$ is definable in $(\mathbb{Q}, +, \times, <)$. In view of Remark 8, we see that $(\mathbb{R}, +, \times, <)$ and $(\mathbb{Q}, +, \times, <)$ are at the opposite ends of the spectrum of "tameness" of definable subsets.

Proposition 13. Assume that $\mathcal{M} = (M, <, (f_i)_{i \in I}, (R_j)_{j \in J})$ is o-minimal, and let $\mathcal{M}' = (M, <, (f_i)_{i \in I'}, (R_j)_{j \in J'})$ where $I' \subseteq I$ and $J' \subseteq J$, as a first-oder structure in the language \mathcal{L}' with signature $((\underline{f_i})_{i \in I'}, (R_j)_{j \in J'})$. Then \mathcal{M}' is o-minimal.

Proof. \mathcal{L}' -formulas are \mathcal{L} -formulas, and given an \mathcal{L}' -formula $\varphi[x_1, \ldots, x_n, y_0]$ and $a_1, \ldots, a_n \in M$, the definable set $\varphi[a_1, \ldots, a_n, \mathcal{M}']$ is equal to $\varphi[a_1, \ldots, a_n, \mathcal{M}]$, which is a finite union of intervals by o-minimality of \mathcal{M} , hence the result.

3 Quantifier elimination for unary group representations

Let $(G, \cdot, 1, \prec)$ be a bi-ordered group. A *unary representation* of G is a total order (X, <) together with a morphism

$$\begin{array}{rcl} t.:G & \longrightarrow & \operatorname{Aut}(X,<) \\ g & \longmapsto & (t_g:x \mapsto t_g(x)) \end{array}$$

where $\operatorname{Aut}(X, <)$ is the group under composition of strictly increasing bijections $X \longrightarrow X$, such that for all $g, h \in G$, we have

$$g \prec h \Longrightarrow \forall x \in X, (t_q(x) < t_h(x)).$$

Example 14. We get a unary representation

left.:
$$G \longrightarrow \operatorname{Aut}(G, <)$$

of G by letting it act on itself by left translations, i.e. by setting $t_g = \text{left}_g := h \mapsto gh$ for each $g \in G$.

Example 15. Consider the group $(G, \cdot, 1, \succ)$ with the reverse ordering \succ defined by

$$g \succ h \iff h \prec g.$$

This is still a bi-ordered group. We have a unary representation

right:
$$G \longrightarrow \operatorname{Aut}(G, \prec)$$

of G on its underlying linear ordering (G, \prec) given by right translations: right_g := $h \mapsto h g^{-1}$ for each $g \in G$.

We now fix a unary representation (X, <, t.) of $(G, \cdot, 1, \prec)$, and we consider the first-order structure $(X, (t_g)_{g \in G}, <)$ in the first-order language \mathcal{L}_G with unary function symbols $\underline{t_g}$ for each $g \in G$ and a binary relation symbol <. We then have

Theorem 16. (adapted from [1, Theorem 8]) Assume that (X, <) is dense or that $(X, <, t) = (G, \prec, \text{left})$. Then $(X, (t_q)_{q \in G}, <)$ has quantifier elimination in \mathcal{L}_G .

Proof. We first note that we have the following equivalences for $g, h \in G$ and $x, y \in X$:

$$t_g(x) < t_h(y) \iff x < t_{q^{-1}h}(y) \tag{1}$$

$$t_g(x) = t_g(y) \iff x = t_{g^{-1}h}(y) \tag{2}$$

$$h(t_g(x) < t_g(y)) \iff (t_g(y) < t_g(x)) \lor (t_g(x) = t_g(y))$$

$$(3)$$

$$\neg(t_g(x) = t_g(y)) \iff (t_g(y) < t_g(x)) \lor (t_g(x) < t_g(y)).$$

$$\tag{4}$$

Now consider an existential formula $\exists x (\varphi[x, y_1, \ldots, y_n])$ for $n \in \mathbb{N}$. So there are atomic and negatomic formulas $\theta_{i,j}[x, y_1, \ldots, y_n]$ such that

$$\varphi[x, y_1, \dots, y_n] \equiv \bigvee_i \bigwedge_j \theta_{i,j}[x, y_1, \dots, y_n].$$

Each neg-atomic formula among the $\theta_{i,j}[x, y_1, \dots, y_n]$'s may be replaced by a disjunction of atomic formulas as in (3-4). Then as in (1-2), we may replace all atomic formulas by formulas of the form $x < t_h(y_i)$ or $x = t_h(y_i)$ for $h \in G$ and $i \in \{1, \dots, n\}$. So each $\bigwedge_j \theta_{i,j}[x, y_1, \dots, y_n]$ is equivalent to a formula

$$\bigvee_{l} \bigwedge_{k} \mu_{k,l}[x, y_1, \dots, y_n]$$

where each $\bigwedge_k \mu_{k,l}[x, y_1, \dots, y_n]$ says that

$$t_{g_1}(y_{i_1}) < \dots < t_{g_k}(y_{i_k}) < x < t_{g_{k+1}}(y_{i_{k+1}}) < \dots < t_{g_m}(y_{i_m})$$

for some $m \in \{1, \ldots, n\}$, $g_1, \ldots, g_m \in G$ and $i: \{1, \ldots, m\} \longrightarrow \{1, \ldots, n\}$. Note that the formula $\exists x(\bigwedge_k \mu_{k,l}[x, y_1, \ldots, y_n])$ is false (hence equivalent to a quantifer-free formula) if $t_{g_1}(y_{i_1}) < \cdots < t_{g_k}(y_{i_k}) < t_{g_{k+1}}(y_{i_{k+1}}) < \cdots < t_{g_m}(y_{i_m})$ is false. If this last formula is true, then $\exists x(\bigwedge_k \mu_{k,l}[x, y_1, \ldots, y_n])$ is equivalent to

$$t_{g_k}(y_{i_k}) < x < t_{g_{k+1}}(y_{i_{k+1}}).$$

If X is densely ordered, then this last formula is always true.

If $(X, <, t) = (G, \prec, \text{left})$ and (G, \prec) is not densely ordered, then consider the least element f of $\{g \in G : g \succ 1\}$. The formula $\exists x (\bigwedge_k \mu_{k,l}[x, y_1, \ldots, y_n])$ is equivalent to

$$t_{fg_k}(y_{i_k}) < t_{g_{k+1}}(y_{i_{k+1}}).$$

So in any case, the formula $\varphi[x, y_1, \ldots, y_n]$ is equivalent to a quantifier-free formula.

Corollary 17. Any dense total order has quantifier elimination in \mathcal{L}_o , and is thus o-minimal.

Corollary 18. The structure $(G, (\operatorname{left}_g)_{g \in G}, \prec)$ is o-minimal.

Bibliography

- B. Baizhanov, J. Baldwin, and V. Verbovskiy. Cayley's theorem for ordered groups: o-minimality. Sibirskie *Èlektronnye Matematicheskie Izvestiya [electronic only]*, 4:278–281, 2007.
- [2] L. van den Dries. Tame topology and o-minimal structures, volume 248 of London Math. Soc. Lect. Note. Cambridge University Press, 1998.

Index

φ holds in \mathcal{M}	free variable $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 2$
atomic formula	neg-atomic formula $\ldots \ldots \ldots$
definable subset	o-minimal structure
first-order language	prenex normal form
first-order structure	quantifier elimination
\mathcal{L} -formula	quantifier-free formula

GLOSSARY

signature	unary representation $\ldots \ldots \ldots \ldots \ldots \ldots \ldots 5$
term	variable symbol $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 1$

Glossary

\mathcal{L}_{Σ}	first-order language over Σ	2
$\varphi[x_1,\ldots,x_n]$	formula with free variables among x_1, \ldots, x_n	2
left	representation of a group by left translations on itself $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	5