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1 First-order logic

1.1 Structures and signatures
A signature is a family of function symbols (fi)i2I with arities �i2N, together with of one of two
types together with a family of relation symbols (Rj)j2J with arities �i2N. Among the relation
symbols, there is always a particular symbol of arity 2 denoted =.

Given a signature � = ((fi)i2I ; (Rj)j2J), a first-order structure for � is a set M , together
with a family (fi)i2I of functions fi:M�i¡!M and a family (Rj)j2J of subsets Rj �M�j called
relations. Each of these defines a specific interpretation of the function and relation symbols. For
instance a relation symbol Rj of arity �j=2 is interpreted by binary relation Rj�M2, a function
fi of arity 0 is interpreted as a constant fi(?)2M , a relation of arity 1 is interpreted subset of
M . The equality symbol is always interpreted as the binary relation of equality on M , i.e. as the
diagonal f(a; a)2M2 : a2M g.

We will consider certain properties of M that pertain to these functions and relations, and
which can be stated in a specific language involving symbols for each such function and relation.
This language is called a first-order language.

Example 1. For instance, if we want to talk about the properties of the ordered field Q, then we
will take two functions Q2¡!Q, namely the sum and the product, two constants 0 and 1, and one
binary relation, namely the standard ordering on Q, seen here as the subset f(a; b)2Q2 :a<bg of
Q2.

Example 2. If we want to talk about the properties of a vector field V over C, then we'll have the
group operation +:V 2¡!V on V and, for each complex number �2C, the scalar multiplication
by �:

V ¡!V ;x 7!�:x:

1.2 First-order language over a signature
Consider a fixed signature �=((fi)i2I ; (Rj)j2J). We then define specific types and sets of words,
i.e. finite strings of symbols, as follows:

� Variable symbols are purely formal symbols among x0; x1; : : : ; xn; : : : or y0; : : : ; yn; : : : .

� The set T� of terms in the signature � is the smallest set of finite strings of symbols among
variable symbols, parentheses symbols ( and ) and function symbols fi; i2 I, which contains
all variable symbols, and such that for all i2 I, if t1; : : : ; t�i2T�, then fi(t1; : : : ; t�i)2T�.

For instance, if � contains two function symbols f and g of arities 1 and 2 respectively,
then the word

f(g(f(x2); x0))

is a term.

� Atomic formulas are words of the form Rj(t1; : : : ; t�j) where j 2J and t1; : : : ; t�j are terms
and j 2J . Neg-atomic formulas are words of the form :(Rj(t1; : : : ; t�j)) where j 2J and
t1; : : : ; t�j are terms and j 2J .
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� L�-formulas are well-written1 words involving atomic formulas, parentheses, logical con-
nectives : (�not�, negation), _ (�or�, disjunction), ^ (�and�, conjunction), and quantifiers 9
(�there exists�, existential quantifier), and 8 (�for all�, universal quantifier).

The first-order language L� over this signature is the set of all L�-formulas.
If a symbol of variable occuring in a formula is preceded by a quantifier in one of its occurrences,

then we say that it is bound. Otherwise, we say that it is free. Usually, we write denote by
'[x1; : : : ; xn] an L�-formula ' whose free variables are among x1; : : : ; xn.

A formula without free variable is called an L�-sentence. Those are the formulas which can be
interpreted as true or false in structures (whereas formulas with free variables may have a truth
value depending on the value of those variables).

1.3 Prenex form and quantifier-free formulas
An L-formula is said quantifier-free if it contains no occurrence of 9 or 8. Quantifier-free formulas
are thus boolean combinations of atomic formulas, i.e. obtained as conjunctions, disjunctions and
negations (and combinations thereof) of atomic formulas.

Proposition 3. Every quantifier-free formula '[x1; : : : ; xk] is is logically equivalent2 to a formula
of the form _

i=1

m ^
j=1

n

�i;j[x1; : : : ; xk];

where m;n2N, and each �i;j[x1; : : : ; xk] is either atomic or neg-atomic.

An L�-formula is in prenex normal form form if it is, up to permutation of the variable symbols,
of the form

�1x1(�2x2(: : :(�nxn(�))))
where � is quantifier-free and �1; : : : ;�n are symbols of quantifiers (i.e. 9 or 8).

Proposition 4. Every L�-formula is logically equivalent to a formula in prenex normal form.

1.4 Interpretation
We fix a signature � and an L�-structureM=(M;: : : ). Given a formula '[x1; : : : ; xn] and a1; : : : ;
an2M , we say that '[a1; : : : ; an] holds inM if the straightforward interpretation of '[x1; : : : ; xn],
where

¡ each variable symbol xk; k 2f1; : : : ; ng is replaced by ak,

¡ each function symbol fi is replaced by the function fi,

¡ each term t(x1; : : : ; xn) is replaced by the element t(a1; : : : ; an)2M accordingly,

¡ each atomic formula Rj(t1; : : : ; t�j) is replaced by the statement:

(t1(a1; : : : ; an); : : : ; t�j(a1; : : : ; an))2Rj ;

¡ each logical combination thereof is evaluated following basic logic,

is true3.

1. Well-written means... well-written, not non-sensical. I leave this undefined and appeal to your experience
as mathematicians. For instance, the word

9((x1^_x3= 8x1(:8

is (very) badly written, hence not an L�-forumla. On the contrary, the word

9x1(x1=x3^ (8x2((x2=x1)_:(x2=x3))))

is well-written. The formal definition of L�-formulas is by induction on the length of words.
2. The keyword for more information on this logical equivalence is predicate calculus (Prädikatenlogik erster

Stufe).
3. This is a very rough statement of Tarski's definition of satisfaction of formulas in structures. There are many

subtleties, and one should study a proper introduction to logic before thinking too hard about this definition.
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Remark 5. Why first-order? Are there higher orders? First here refers to the fact that quantifiers
in the language L� only apply to variables which range in elements, and not subsets of the structure.
One could also have symbols of variable X0; : : : ; Xn; : : : denoting subsets of M , so that a formula
in this higher-order language for the structure (R; <) could state that (R; <) has the least upper
bound property.

But the first-order language does not allow this. It can be shown that there is no set t of
sentences in the first-order language over � with one binary relation symbol such that L�-structure
in which all sentences in T hold are exactly linearly ordered sets with the least upper bound
property.

1.5 Quantifier elimination
Consider a first-order signature � and an L�-structureM. We say thatM eliminates quantifiers
(or has quantifier elimination) if for every L�-formula '[x1; : : : ; xn], there is a quantifier-free L�-
formula �[x1; : : : ; xn] such that the following sentence holds in M:

8x1; : : : ;8xn('[x1; : : : ; xn]() �[x1; : : : ; xn]):

There are many tests in order to show thatM eliminates quantifiers. One of the most basic ones
is the following

Proposition 6. Assume that for each n2N and each quantifier-free formula �[x0; : : : ; xn; xn+1],
there is a quantifier-free formula  [x0; : : : ; xn] such that the following holds in M:

8x0; : : : ; xn(9xn+1(�[x0; : : : ; xn; xn+1])()  [x0; : : : ; xn]):

Then M eliminates quantifiers.

Idea of proof. Prenex normal form + induction. �

2 Definability and o-minimality

In this section, we fix a first-order signature � and an L�-structure M=(M; : : : ).

2.1 Definable subsets
Given n2N, we say that a set X is definable in dimension n in M if X �Mn and there are an
m2N, a tuple (a1; : : : ; am)2Mm and a formula '[x1; : : : ; xn; y1; : : : ; yn] such that

X = '[a1; : : : ; an;M] := f(b1; : : : ; bn)2Mn : '[a1; : : : ; am; b1; : : : ; bn] holds in Mg:

We say that X is definable without quantifiers if '[x1; : : : ; xn; y1; : : : ; yn] can be taken to be
quantifier-free.

Example 7. In (Z;+;�), the set N is definable. Indeed, Lagrange's four squares theorem, an
integer n2Z is positive if and only if it is a sum of for squares of integers. So

N= fn2Z :9x0; x1; x2; x3(n=x0�x0+x1�x1+x2�x2+x3�x3) holdsg:

The set N is not definable without quantifiers. Indeed, recall that quantifier-free formulas are
equivalent to boolean combinations of atomic formulas. In (Z;+;�), an atomic formula in one
free variable '[x0] is equivalent to an equality P (x0) = 0 where P [X] 2 Z[X]. Hence it defines
either Z if P =0, or a finite subset otherwise. In particular, it defines a finite or cofinite4 subset
of Z. Since the set of finite or cofinite subsets of Z is closed under unions and intersections, any
boolean combination ot atomic formulas defines a finite or cofinite subset. So '[x0] defines a finite
or cofinite subset. Since N is neither finite nor cofinite in Z, it cannot be defined by '[x0].

4. a subset X �Mn is cofinite if its complement Mn nX in Mn is finite
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Remark 8. In fact, in (Z; +; �), many things are definable. For instance, every recursively
enumerable subset of N is definable in dimension 1 in (Z;+;�).

2.2 Formal-geometric correspondence
Here we fix an m2N, an n2N with n> 0, a tuple a1; : : : ; am2M , as well as L�-formulas

' = '[x1; : : : ; xm; y1; : : : ; yn] and
 =  [x1; : : : ; xm; y1; : : : ; yn]:

We have the following list of correspondences between geometric operations on definable sets

X := '[a1; : : : ; am;M] and
Y :=  [a1; : : : ; am;M];

and their defining formulas ' and  .

Logical operation on defining formula Geometric operation on definable set
Negation :' Complement Mn nX

Disjunction: ('_  ) Union X [Y
Conjunction: ('^  ) Intersection X \Y

Existential quantifier: 9yn' Projection on Mn¡1.
Universal quantifier: 8yn'

S
Z�M�XZ

Thus the theory of definability can be stated in purely geometric terms. This is the spirit of [2].
However, many important results regarding definability (in particular in o-minimality) crucially
rely on the interplay between intuitions coming from logic and geometry, algebra, analysis, graph
theory, and so on. . .

2.3 O-minimality
Let (¡; <) be a linearly ordered set5. An interval in (¡; <) is a subset I of one of the following
forms for a; b2¡:
� (a; b) := f 2¡ : a<  < bg,
� (¡1; b) := f 2¡ :  <bg,
� (a;+1) := f 2¡ : a< g,
� (¡1;+1)=¡,

� [a; b) := f 2¡ : a6  < bg,
� (a; b] := f 2¡ : a< 6 bg,
� [a; b] := f 2¡ : a6 6 bg,
� (¡1; b] := f 2¡ : 6 bg,
� [a;+1) := f 2¡ : a6 g,

The first four types of intervals are called open intervals.

Example 9. The set C := fq 2Q>0 : q2< 2g is not an interval in (Q; <), whereas

fr2R>0 : r2< 2g=(0; 2
p

)

is an interval in (R; <).

Proposition 10. Let (¡; <) be a linearly ordered set. Then the quantifier-free definable subsets
of ¡ are exactly the finite unions of intervals in ¡.

5. it is usual to use strict orderings; this is not crucial for results but it does play a role when manipulating
formulas since it affects which formulas are atomic: x06x1 or x0<x1.
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Definition 11. A first-order structureM=(M;<;:::) is said o-minimal if every definable subset
of M in dimension 1 is a finite union of intervals in (M;<).

Corollary 12. If (¡; <) eliminates quantifiers, then it is o-minimal.

The set C in Example 9 is definable in the ordered group (Q>0; �; 1;<). This set is not a finite
union of intervals, otherwise it would have a least upper bound in Q>0. Therefore (Q>0; �; 1;<) is
not o-minimal.

O-minimal ordered fields. In the Fachseminar and in RAG I, we will see examples of o-minimal
ordered fields. Here we consider the case of rational numbers. The ordered field (Q;+;�;<) is not
o-minimal for similar reasons as above. What's more, by a theorem of Julia Robinson, the set Z
of integers is definable in (Q;+;�). So every definable set in (N;+;�) is definable in (Q;+;�;<).
In view of Remark 8, we see that (R;+;�; <) and (Q;+;�; <) are at the opposite ends of the
spectrum of �tameness� of definable subsets.

Proposition 13. Assume that M = (M; <; (fi)i2I ; (Rj)j2J) is o-minimal, and let M0 = (M;
<; (fi)i2I 0; (Rj)j2J 0) where I 0� I and J 0� J, as a first-oder structure in the language L0 with
signature ((fi)i2I 0; (Rj)j2J 0). Then M0 is o-minimal.

Proof. L0-formulas are L-formulas, and given an L0-formula '[x1; : : : ; xn; y0] and a1; : : : ; an2M ,
the definable set '[a1; : : : ; an;M0] is equal to '[a1; : : : ; an;M], which is a finite union of intervals
by o-minimality of M, hence the result. �

3 Quantifier elimination for unary group representations

Let (G; �;1;�) be a bi-ordered group. A unary representation of G is a total order (X;<) together
with a morphism

t�:G ¡! Aut(X;<)
g 7¡! (tg:x 7! tg(x))

where Aut(X;<) is the group under composition of strictly increasing bijections X ¡!X, such
that for all g; h2G, we have

g�h=)8x2X; (tg(x)<th(x)):

Example 14. We get a unary representation

left�:G¡!Aut(G;<)

of G by letting it act on itself by left translations, i.e. by setting tg= leftg :=h 7! gh for each g2G.

Example 15. Consider the group (G; �; 1;�) with the reverse ordering � defined by

g�h()h� g:

This is still a bi-ordered group. We have a unary representation

right�:G¡!Aut(G;�)

of G on its underlying linear ordering (G;�) given by right translations: rightg := h 7! h g¡1 for
each g 2G.

We now fix a unary representation (X; <; t�) of (G; �; 1;�), and we consider the first-order
structure (X; (tg)g2G; <) in the first-order language LG with unary function symbols tg for each
g 2G and a binary relation symbol <. We then have

Theorem 16. (adapted from [1, Theorem 8]) Assume that (X;<) is dense or that (X;<; t�)=(G;
�; left). Then (X; (tg)g2G; <) has quantifier elimination in LG.
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Proof. We first note that we have the following equivalences for g; h2G and x; y 2X :

tg(x)<th(y) () x< tg¡1h(y) (1)
tg(x)= tg(y) () x= tg¡1h(y) (2)

:(tg(x)<tg(y)) () (tg(y)<tg(x))_ (tg(x)= tg(y)) (3)
:(tg(x)= tg(y)) () (tg(y)<tg(x))_ (tg(x)<tg(y)): (4)

Now consider an existential formula 9x ('[x; y1; : : : ; yn]) for n2N. So there are atomic and neg-
atomic formulas �i;j[x; y1; : : : ; yn] such that

'[x; y1; : : : ; yn]�
_
i

^
j

�i;j[x; y1; : : : ; yn]:

Each neg-atomic formula among the �i;j[x; y1; : : : ; yn]'s may be replaced by a disjunction of atomic
formulas as in (3-4). Then as in (1-2), we may replace all atomic formulas by formulas of the form
x< th(yi) or x= th(yi) for h2G and i2f1; : : : ; ng. So each

V
j �i;j[x; y1; : : : ; yn] is equivalent to a

formula _
l

^
k

�k;l[x; y1; : : : ; yn]

where each
V
k�k;l[x; y1; : : : ; yn] says that

tg1(yi1)< � � �<tgk(yik)<x< tgk+1(yik+1)< � � �<tgm(yim)

for some m 2 f1; : : : ; ng, g1; : : : ; gm 2G and i: f1; : : : ; mg ¡! f1; : : : ; ng. Note that the formula
9x(

V
k �k;l[x; y1; : : : ; yn]) is false (hence equivalent to a quantifer-free formula) if tg1(yi1)< � � � <

tgk(yik)<tgk+1(yik+1)< ���<tgm(yim) is false. If this last formula is true, then 9x(
V
k�k;l[x; y1;:::; yn])

is equivalent to

tgk(yik)<x< tgk+1(yik+1):

If X is densely ordered, then this last formula is always true.
If (X;<; t�)= (G;�; left) and (G;�) is not densely ordered, then consider the least element f

of fg 2G : g� 1g. The formula 9x(
V
k�k;l[x; y1; : : : ; yn]) is equivalent to

tfgk(yik)<tgk+1(yik+1):

So in any case, the formula '[x; y1; : : : ; yn] is equivalent to a quantifier-free formula. �

Corollary 17. Any dense total order has quantifier elimination in Lo, and is thus o-minimal.

Corollary 18. The structure (G; (leftg)g2G;�) is o-minimal.
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