An introduction to first-order logic with emphasis on definability and o-minimality

by Vincent Bagayoko

November 2022

1 First-order logic

1.1 Structures and signatures

A signature is a family of function symbols $\left(\underline{f_{i}}\right)_{i \in I}$ with arities $\alpha_{i} \in \mathbb{N}$, together with of one of two types together with a family of relation symbols $\left(\underline{R_{j}}\right)_{j \in J}$ with arities $\beta_{i} \in \mathbb{N}$. Among the relation symbols, there is always a particular symbol of arity 2 denoted $=$.

Given a signature $\Sigma=\left(\left(\underline{f_{i}}\right)_{i \in I},\left(\underline{R_{j}}\right)_{j \in J}\right)$, a first-order structure for Σ is a set M, together with a family $\left(f_{i}\right)_{i \in I}$ of functions $f_{i}: \bar{M}^{\alpha_{i}} \longrightarrow M$ and a family $\left(R_{j}\right)_{j \in J}$ of subsets $R_{j} \subseteq M^{\beta_{j}}$ called relations. Each of these defines a specific interpretation of the function and relation symbols. For instance a relation symbol R_{j} of arity $\beta_{j}=2$ is interpreted by binary relation $R_{j} \subseteq M^{2}$, a function f_{i} of arity 0 is interpreted as a constant $f_{i}(\varnothing) \in M$, a relation of arity 1 is interpreted subset of M. The equality symbol is always interpreted as the binary relation of equality on M, i.e. as the diagonal $\left\{(a, a) \in M^{2}: a \in M\right\}$.

We will consider certain properties of M that pertain to these functions and relations, and which can be stated in a specific language involving symbols for each such function and relation. This language is called a first-order language.

Example 1. For instance, if we want to talk about the properties of the ordered field \mathbb{Q}, then we will take two functions $\mathbb{Q}^{2} \longrightarrow \mathbb{Q}$, namely the sum and the product, two constants 0 and 1 , and one binary relation, namely the standard ordering on \mathbb{Q}, seen here as the subset $\left\{(a, b) \in \mathbb{Q}^{2}: a<b\right\}$ of \mathbb{Q}^{2}.

Example 2. If we want to talk about the properties of a vector field V over \mathbb{C}, then we'll have the group operation $+: V^{2} \longrightarrow V$ on V and, for each complex number $\lambda \in \mathbb{C}$, the scalar multiplication by λ :

$$
V \longrightarrow V ; x \mapsto \lambda . x .
$$

1.2 First-order language over a signature

Consider a fixed signature $\Sigma=\left(\left(\underline{f_{i}}\right)_{i \in I},\left(\underline{R_{j}}\right)_{j \in J}\right)$. We then define specific types and sets of words, i.e. finite strings of symbols, as follows:

- Variable symbols are purely formal symbols among $x_{0}, x_{1}, \ldots, x_{n}, \ldots$ or $y_{0}, \ldots, y_{n}, \ldots$.
- The set \mathcal{T}_{Σ} of terms in the signature Σ is the smallest set of finite strings of symbols among variable symbols, parentheses symbols (and) and function symbols $f_{i}, i \in I$, which contains all variable symbols, and such that for all $i \in I$, if $t_{1}, \ldots, t_{\alpha_{i}} \in \mathcal{T}_{\Sigma}$, then $\underline{f_{i}}\left(t_{1}, \ldots, t_{\alpha_{i}}\right) \in \mathcal{T}_{\Sigma}$.

For instance, if Σ contains two function symbols \underline{f} and \underline{g} of arities 1 and 2 respectively, then the word

$$
\underline{f}\left(\underline{g}\left(\underline{f}\left(x_{2}\right), x_{0}\right)\right)
$$

is a term.

- Atomic formulas are words of the form $R_{j}\left(t_{1}, \ldots, t_{\beta_{j}}\right)$ where $j \in J$ and $t_{1}, \ldots, t_{\beta_{j}}$ are terms and $j \in J$. Neg-atomic formulas are words of the form $\neg\left(R_{j}\left(t_{1}, \ldots, t_{\beta_{j}}\right)\right)$ where $j \in J$ and $t_{1}, \ldots, t_{\beta_{j}}$ are terms and $j \in J$.
- $\quad \mathcal{L}_{\Sigma}$-formulas are well-written ${ }^{1}$ words involving atomic formulas, parentheses, logical connectives \neg ("not", negation), \vee ("or", disjunction), \wedge ("and", conjunction), and quantifiers \exists ("there exists", existential quantifier), and \forall ("for all", universal quantifier).
The first-order language \mathcal{L}_{Σ} over this signature is the set of all \mathcal{L}_{Σ}-formulas.
If a symbol of variable occuring in a formula is preceded by a quantifier in one of its occurrences, then we say that it is bound. Otherwise, we say that it is free. Usually, we write denote by $\varphi\left[x_{1}, \ldots, x_{n}\right]$ an \mathcal{L}_{Σ}-formula φ whose free variables are among x_{1}, \ldots, x_{n}.

A formula without free variable is called an \mathcal{L}_{Σ}-sentence. Those are the formulas which can be interpreted as true or false in structures (whereas formulas with free variables may have a truth value depending on the value of those variables).

1.3 Prenex form and quantifier-free formulas

An \mathcal{L}-formula is said quantifier-free if it contains no occurrence of \exists or \forall. Quantifier-free formulas are thus boolean combinations of atomic formulas, i.e. obtained as conjunctions, disjunctions and negations (and combinations thereof) of atomic formulas.

Proposition 3. Every quantifier-free formula $\varphi\left[x_{1}, \ldots, x_{k}\right]$ is is logically equivalent ${ }^{2}$ to a formula of the form

$$
\bigvee_{i=1}^{m} \bigwedge_{j=1}^{n} \theta_{i, j}\left[x_{1}, \ldots, x_{k}\right]
$$

where $m, n \in \mathbb{N}$, and each $\theta_{i, j}\left[x_{1}, \ldots, x_{k}\right]$ is either atomic or neg-atomic.
An $\mathcal{L}_{\Sigma^{-}}$-formula is in prenex normal form form if it is, up to permutation of the variable symbols, of the form

$$
\square_{1} x_{1}\left(\square_{2} x_{2}\left(\ldots\left(\square_{n} x_{n}(\theta)\right)\right)\right)
$$

where θ is quantifier-free and $\square_{1}, \ldots, \square_{n}$ are symbols of quantifiers (i.e. \exists or \forall).
Proposition 4. Every $\mathcal{L}_{\Sigma^{-}}$formula is logically equivalent to a formula in prenex normal form.

1.4 Interpretation

We fix a signature Σ and an \mathcal{L}_{Σ}-structure $\mathcal{M}=(M, \ldots)$. Given a formula $\varphi\left[x_{1}, \ldots, x_{n}\right]$ and a_{1}, \ldots, $a_{n} \in M$, we say that $\varphi\left[a_{1}, \ldots, a_{n}\right]$ holds in \mathcal{M} if the straightforward interpretation of $\varphi\left[x_{1}, \ldots, x_{n}\right]$, where

- each variable symbol $x_{k}, k \in\{1, \ldots, n\}$ is replaced by a_{k},
- each function symbol $\underline{f_{i}}$ is replaced by the function f_{i},
- each term $t\left(x_{1}, \ldots, x_{n}\right)$ is replaced by the element $t\left(a_{1}, \ldots, a_{n}\right) \in M$ accordingly,
- each atomic formula $\underline{R_{j}}\left(t_{1}, \ldots, t_{\beta_{j}}\right)$ is replaced by the statement:

$$
\left(t_{1}\left(a_{1}, \ldots, a_{n}\right), \ldots, t_{\beta_{j}}\left(a_{1}, \ldots, a_{n}\right)\right) \in R_{j}
$$

- each logical combination thereof is evaluated following basic logic, is true ${ }^{3}$.

[^0]Remark 5. Why first-order? Are there higher orders? First here refers to the fact that quantifiers in the language \mathcal{L}_{Σ} only apply to variables which range in elements, and not subsets of the structure. One could also have symbols of variable $X_{0}, \ldots, X_{n}, \ldots$ denoting subsets of M, so that a formula in this higher-order language for the structure $(\mathbb{R},<)$ could state that $(\mathbb{R},<)$ has the least upper bound property.

But the first-order language does not allow this. It can be shown that there is no set t of sentences in the first-order language over Σ with one binary relation symbol such that $\mathcal{L}_{\Sigma^{-}}$-structure in which all sentences in T hold are exactly linearly ordered sets with the least upper bound property.

1.5 Quantifier elimination

Consider a first-order signature Σ and an $\mathcal{L}_{\Sigma^{-}}$-structure \mathcal{M}. We say that \mathcal{M} eliminates quantifiers (or has quantifier elimination) if for every $\mathcal{L}_{\Sigma^{-}}$-formula $\varphi\left[x_{1}, \ldots, x_{n}\right]$, there is a quantifier-free $\mathcal{L}_{\Sigma^{-}}$ formula $\theta\left[x_{1}, \ldots, x_{n}\right]$ such that the following sentence holds in \mathcal{M} :

$$
\forall x_{1}, \ldots, \forall x_{n}\left(\varphi\left[x_{1}, \ldots, x_{n}\right] \Longleftrightarrow \theta\left[x_{1}, \ldots, x_{n}\right]\right) .
$$

There are many tests in order to show that \mathcal{M} eliminates quantifiers. One of the most basic ones is the following

Proposition 6. Assume that for each $n \in \mathbb{N}$ and each quantifier-free formula $\theta\left[x_{0}, \ldots, x_{n}, x_{n+1}\right]$, there is a quantifier-free formula $\psi\left[x_{0}, \ldots, x_{n}\right]$ such that the following holds in \mathcal{M} :

$$
\forall x_{0}, \ldots, x_{n}\left(\exists x_{n+1}\left(\theta\left[x_{0}, \ldots, x_{n}, x_{n+1}\right]\right) \Longleftrightarrow \psi\left[x_{0}, \ldots, x_{n}\right]\right)
$$

Then \mathcal{M} eliminates quantifiers.
Idea of proof. Prenex normal form + induction.

2 Definability and o-minimality

In this section, we fix a first-order signature Σ and an \mathcal{L}_{Σ}-structure $\mathcal{M}=(M, \ldots)$.

2.1 Definable subsets

Given $n \in \mathbb{N}$, we say that a set X is definable in dimension n in \mathcal{M} if $X \subseteq M^{n}$ and there are an $m \in \mathbb{N}$, a tuple $\left(a_{1}, \ldots, a_{m}\right) \in M^{m}$ and a formula $\varphi\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ such that

$$
X=\varphi\left[a_{1}, \ldots, a_{n}, \mathcal{M}\right]:=\left\{\left(b_{1}, \ldots, b_{n}\right) \in M^{n}: \varphi\left[a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{n}\right] \text { holds in } \mathcal{M}\right\} .
$$

We say that X is definable without quantifiers if $\varphi\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ can be taken to be quantifier-free.

Example 7. In $(\mathbb{Z},+, \times)$, the set \mathbb{N} is definable. Indeed, Lagrange's four squares theorem, an integer $n \in \mathbb{Z}$ is positive if and only if it is a sum of for squares of integers. So

$$
\mathbb{N}=\left\{n \in \mathbb{Z}: \exists x_{0}, x_{1}, x_{2}, x_{3}\left(n=x_{0} \times x_{0}+x_{1} \times x_{1}+x_{2} \times x_{2}+x_{3} \times x_{3}\right) \text { holds }\right\}
$$

The set \mathbb{N} is not definable without quantifiers. Indeed, recall that quantifier-free formulas are equivalent to boolean combinations of atomic formulas. In $(\mathbb{Z},+, \times)$, an atomic formula in one free variable $\varphi\left[x_{0}\right]$ is equivalent to an equality $P\left(x_{0}\right)=0$ where $P[X] \in \mathbb{Z}[X]$. Hence it defines either \mathbb{Z} if $P=0$, or a finite subset otherwise. In particular, it defines a finite or cofinite ${ }^{4}$ subset of \mathbb{Z}. Since the set of finite or cofinite subsets of \mathbb{Z} is closed under unions and intersections, any boolean combination ot atomic formulas defines a finite or cofinite subset. So $\varphi\left[x_{0}\right]$ defines a finite or cofinite subset. Since \mathbb{N} is neither finite nor cofinite in \mathbb{Z}, it cannot be defined by $\varphi\left[x_{0}\right]$.

[^1]Remark 8. In fact, in $(\mathbb{Z},+, \times)$, many things are definable. For instance, every recursively enumerable subset of \mathbb{N} is definable in dimension 1 in $(\mathbb{Z},+, \times)$.

2.2 Formal-geometric correspondence

Here we fix an $m \in \mathbb{N}$, an $n \in \mathbb{N}$ with $n>0$, a tuple $a_{1}, \ldots, a_{m} \in M$, as well as \mathcal{L}_{Σ}-formulas

$$
\begin{aligned}
\varphi & =\varphi\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] \quad \text { and } \\
\psi & =\psi\left[x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right] .
\end{aligned}
$$

We have the following list of correspondences between geometric operations on definable sets

$$
\begin{aligned}
X & :=\varphi\left[a_{1}, \ldots, a_{m}, \mathcal{M}\right] \quad \text { and } \\
Y & :=\psi\left[a_{1}, \ldots, a_{m}, \mathcal{M}\right]
\end{aligned}
$$

and their defining formulas φ and ψ.

Logical operation on defining formula	Geometric operation on definable set
Negation $\neg \varphi$	Complement $M^{n} \backslash X$
Disjunction: $(\varphi \vee \psi)$	Union $X \cup Y$
Conjunction: $(\varphi \wedge \psi)$	Intersection $X \cap Y$
Existential quantifier: $\exists y_{n} \varphi$	Projection on M^{n-1}.
Universal quantifier: $\forall y_{n} \varphi$	$\bigcup_{Z \times M \subseteq X^{Z}}$

Thus the theory of definability can be stated in purely geometric terms. This is the spirit of [2]. However, many important results regarding definability (in particular in o-minimality) crucially rely on the interplay between intuitions coming from logic and geometry, algebra, analysis, graph theory, and so on...

2.3 O-minimality

Let $(\Gamma,<)$ be a linearly ordered set ${ }^{5}$. An interval in $(\Gamma,<)$ is a subset I of one of the following forms for $a, b \in \Gamma$:

- $(a, b):=\{\gamma \in \Gamma: a<\gamma<b\}$,
- $(-\infty, b):=\{\gamma \in \Gamma: \gamma<b\}$,
- $(a,+\infty):=\{\gamma \in \Gamma: a<\gamma\}$,
- $(-\infty,+\infty)=\Gamma$,
- $[a, b):=\{\gamma \in \Gamma: a \leqslant \gamma<b\}$,
- $(a, b]:=\{\gamma \in \Gamma: a<\gamma \leqslant b\}$,
- $[a, b]:=\{\gamma \in \Gamma: a \leqslant \gamma \leqslant b\}$,
- $(-\infty, b]:=\{\gamma \in \Gamma: \gamma \leqslant b\}$,
- $[a,+\infty):=\{\gamma \in \Gamma: a \leqslant \gamma\}$,

The first four types of intervals are called open intervals.
Example 9. The set $C:=\left\{q \in \mathbb{Q}^{>0}: q^{2}<2\right\}$ is not an interval in $(\mathbb{Q},<)$, whereas

$$
\left\{r \in \mathbb{R}^{>0}: r^{2}<2\right\}=(0, \sqrt{2})
$$

is an interval in $(\mathbb{R},<)$.
Proposition 10. Let $(\Gamma,<)$ be a linearly ordered set. Then the quantifier-free definable subsets of Γ are exactly the finite unions of intervals in Γ.

[^2]Definition 11. A first-order structure $\mathcal{M}=(M,<, \ldots)$ is said \mathbf{o}-minimal if every definable subset of \mathcal{M} in dimension 1 is a finite union of intervals in $(M,<)$.

Corollary 12. If $(\Gamma,<)$ eliminates quantifiers, then it is o-minimal.
The set C in Example 9 is definable in the ordered group ($\mathbb{Q}^{>0}, \cdot, 1,<$). This set is not a finite union of intervals, otherwise it would have a least upper bound in $\mathbb{Q}^{>0}$. Therefore $\left(\mathbb{Q}^{>0}, \cdot, 1,<\right)$ is not o-minimal.

O-minimal ordered fields. In the Fachseminar and in RAG I, we will see examples of o-minimal ordered fields. Here we consider the case of rational numbers. The ordered field $(\mathbb{Q},+, \times,<)$ is not o-minimal for similar reasons as above. What's more, by a theorem of Julia Robinson, the set \mathbb{Z} of integers is definable in $(\mathbb{Q},+, \times)$. So every definable set in $(\mathbb{N},+, \times)$ is definable in $(\mathbb{Q},+, \times,<)$. In view of Remark 8 , we see that $(\mathbb{R},+, \times,<)$ and $(\mathbb{Q},+, \times,<)$ are at the opposite ends of the spectrum of "tameness" of definable subsets.

Proposition 13. Assume that $\mathcal{M}=\left(M,<,\left(f_{i}\right)_{i \in I},\left(R_{j}\right)_{j \in J}\right)$ is o-minimal, and let $\mathcal{M}^{\prime}=(M$, $\left.<,\left(f_{i}\right)_{i \in I^{\prime}},\left(R_{j}\right)_{j \in J^{\prime}}\right)$ where $I^{\prime} \subseteq I$ and $J^{\prime} \subseteq J$, as a first-oder structure in the language \mathcal{L}^{\prime} with signature $\left(\left(\underline{f_{i}}\right)_{i \in I^{\prime}},\left(\underline{R_{j}}\right)_{j \in J^{\prime}}\right)$. Then \mathcal{M}^{\prime} is o-minimal.

Proof. \mathcal{L}^{\prime}-formulas are \mathcal{L}-formulas, and given an \mathcal{L}^{\prime}-formula $\varphi\left[x_{1}, \ldots, x_{n}, y_{0}\right]$ and $a_{1}, \ldots, a_{n} \in M$, the definable set $\varphi\left[a_{1}, \ldots, a_{n}, \mathcal{M}^{\prime}\right]$ is equal to $\varphi\left[a_{1}, \ldots, a_{n}, \mathcal{M}\right]$, which is a finite union of intervals by o-minimality of \mathcal{M}, hence the result.

3 Quantifier elimination for unary group representations

Let $(G, \cdot, 1, \prec)$ be a bi-ordered group. A unary representation of G is a total order $(X,<)$ together with a morphism

$$
\begin{aligned}
t .: G & \longrightarrow \operatorname{Aut}(X,<) \\
g & \longmapsto\left(t_{g}: x \mapsto t_{g}(x)\right)
\end{aligned}
$$

where $\operatorname{Aut}(X,<)$ is the group under composition of strictly increasing bijections $X \longrightarrow X$, such that for all $g, h \in G$, we have

$$
g \prec h \Longrightarrow \forall x \in X,\left(t_{g}(x)<t_{h}(x)\right) .
$$

Example 14. We get a unary representation

$$
\text { left.: } G \longrightarrow \operatorname{Aut}(G,<)
$$

of G by letting it act on itself by left translations, i.e. by setting $t_{g}=\operatorname{left}_{g}:=h \mapsto g h$ for each $g \in G$.
Example 15. Consider the group $(G, \cdot, 1, \succ)$ with the reverse ordering \succ defined by

$$
g \succ h \Longleftrightarrow h \prec g .
$$

This is still a bi-ordered group. We have a unary representation

$$
\text { right.: } G \longrightarrow \operatorname{Aut}(G, \prec)
$$

of G on its underlying linear ordering (G, \prec) given by right translations: $\operatorname{right}_{g}:=h \mapsto h g^{-1}$ for each $g \in G$.

We now fix a unary representation $(X,<, t$.) of ($G, \cdot, 1, \prec$), and we consider the first-order structure $\left(X,\left(t_{g}\right)_{g \in G},<\right)$ in the first-order language \mathcal{L}_{G} with unary function symbols $\underline{t_{g}}$ for each $g \in G$ and a binary relation symbol $<$. We then have

Theorem 16. (adapted from [1, Theorem 8]) Assume that $(X,<)$ is dense or that $(X,<, t)=.(G$, \prec, left $)$. Then $\left(X,\left(t_{g}\right)_{g \in G},<\right)$ has quantifier elimination in \mathcal{L}_{G}.

Proof. We first note that we have the following equivalences for $g, h \in G$ and $x, y \in X$:

$$
\begin{align*}
t_{g}(x)<t_{h}(y) & \Longleftrightarrow x<t_{g^{-1} h}(y) \tag{1}\\
t_{g}(x)=t_{g}(y) & \Longleftrightarrow x=t_{g^{-1} h}(y) \tag{2}\\
\neg\left(t_{g}(x)<t_{g}(y)\right) & \Longleftrightarrow\left(t_{g}(y)<t_{g}(x)\right) \vee\left(t_{g}(x)=t_{g}(y)\right) \tag{3}\\
\neg\left(t_{g}(x)=t_{g}(y)\right) & \Longleftrightarrow\left(t_{g}(y)<t_{g}(x)\right) \vee\left(t_{g}(x)<t_{g}(y)\right) . \tag{4}
\end{align*}
$$

Now consider an existential formula $\exists x\left(\varphi\left[x, y_{1}, \ldots, y_{n}\right]\right)$ for $n \in \mathbb{N}$. So there are atomic and negatomic formulas $\theta_{i, j}\left[x, y_{1}, \ldots, y_{n}\right]$ such that

$$
\varphi\left[x, y_{1}, \ldots, y_{n}\right] \equiv \bigvee_{i} \bigwedge_{j} \theta_{i, j}\left[x, y_{1}, \ldots, y_{n}\right]
$$

Each neg-atomic formula among the $\theta_{i, j}\left[x, y_{1}, \ldots, y_{n}\right]$'s may be replaced by a disjunction of atomic formulas as in (3-4). Then as in (1-2), we may replace all atomic formulas by formulas of the form $x<t_{h}\left(y_{i}\right)$ or $x=t_{h}\left(y_{i}\right)$ for $h \in G$ and $i \in\{1, \ldots, n\}$. So each $\bigwedge_{j} \theta_{i, j}\left[x, y_{1}, \ldots, y_{n}\right]$ is equivalent to a formula

$$
\bigvee_{l} \bigwedge_{k} \mu_{k, l}\left[x, y_{1}, \ldots, y_{n}\right]
$$

where each $\bigwedge_{k} \mu_{k, l}\left[x, y_{1}, \ldots, y_{n}\right]$ says that

$$
t_{g_{1}}\left(y_{i_{1}}\right)<\cdots<t_{g_{k}}\left(y_{i_{k}}\right)<x<t_{g_{k+1}}\left(y_{i_{k+1}}\right)<\cdots<t_{g_{m}}\left(y_{i_{m}}\right)
$$

for some $m \in\{1, \ldots, n\}, g_{1}, \ldots, g_{m} \in G$ and $i:\{1, \ldots, m\} \longrightarrow\{1, \ldots, n\}$. Note that the formula $\exists x\left(\bigwedge_{k} \mu_{k, l}\left[x, y_{1}, \ldots, y_{n}\right]\right)$ is false (hence equivalent to a quantifer-free formula) if $t_{g_{1}}\left(y_{i_{1}}\right)<\cdots<$ $t_{g_{k}}\left(y_{i_{k}}\right)<t_{g_{k+1}}\left(y_{i_{k+1}}\right)<\cdots<t_{g_{m}}\left(y_{i_{m}}\right)$ is false. If this last formula is true, then $\exists x\left(\bigwedge_{k} \mu_{k, l}\left[x, y_{1}, \ldots, y_{n}\right]\right)$ is equivalent to

$$
t_{g_{k}}\left(y_{i_{k}}\right)<x<t_{g_{k+1}}\left(y_{i_{k+1}}\right) .
$$

If X is densely ordered, then this last formula is always true.
If $(X,<, t)=(G, \prec$, left $)$ and (G, \prec) is not densely ordered, then consider the least element f of $\{g \in G: g \succ 1\}$. The formula $\exists x\left(\bigwedge_{k} \mu_{k, l}\left[x, y_{1}, \ldots, y_{n}\right]\right)$ is equivalent to

$$
t_{f g_{k}}\left(y_{i_{k}}\right)<t_{g_{k+1}}\left(y_{i_{k+1}}\right)
$$

So in any case, the formula $\varphi\left[x, y_{1}, \ldots, y_{n}\right]$ is equivalent to a quantifier-free formula.
Corollary 17. Any dense total order has quantifier elimination in \mathcal{L}_{o}, and is thus o-minimal.
Corollary 18. The structure $\left(G,\left(\operatorname{left}_{g}\right)_{g \in G}, \prec\right)$ is o-minimal.

Bibliography

[1] B. Baizhanov, J. Baldwin, and V. Verbovskiy. Cayley's theorem for ordered groups: o-minimality. Sibirskie Èlektronnye Matematicheskie Izvestiya [electronic only], 4:278-281, 2007.
[2] L. van den Dries. Tame topology and o-minimal structures, volume 248 of London Math. Soc. Lect. Note. Cambridge University Press, 1998.

Index

φ holds in \mathcal{M}. .
atomic formula .
definable subset
first-order language
first-order structure
fin
L-formula . 2
\mathcal{L}-formula 2
free variable 2
neg-atomic formula 1
o-minimal structure 5
prenex normal form 2
quantifier elimination 3
quantifier-free formula 2
signature unary representation 5
term variable symbol 1

Glossary

\mathcal{L}_{Σ}	first-order language over $\Sigma \ldots$.

[^0]: 1. Well-written means... well-written, not non-sensical. I leave this undefined and appeal to your experience as mathematicians. For instance, the word

 $$
 \exists\left(\left(x_{1} \wedge \vee x_{3}=\forall x_{1}(\neg \forall\right.\right.
 $$

 is (very) badly written, hence not an \mathcal{L}_{Σ}-forumla. On the contrary, the word

 $$
 \exists x_{1}\left(x_{1}=x_{3} \wedge\left(\forall x_{2}\left(\left(x_{2}=x_{1}\right) \vee \neg\left(x_{2}=x_{3}\right)\right)\right)\right)
 $$

 is well-written. The formal definition of \mathcal{L}_{Σ}-formulas is by induction on the length of words.
 2. The keyword for more information on this logical equivalence is predicate calculus (Prädikatenlogik erster Stufe).
 3. This is a very rough statement of Tarski's definition of satisfaction of formulas in structures. There are many subtleties, and one should study a proper introduction to logic before thinking too hard about this definition.

[^1]: 4. a subset $X \subseteq M^{n}$ is cofinite if its complement $M^{n} \backslash X$ in M^{n} is finite
[^2]: 5. it is usual to use strict orderings; this is not crucial for results but it does play a role when manipulating formulas since it affects which formulas are atomic: $x_{0} \leqslant x_{1}$ or $x_{0}<x_{1}$.
